CipherLab
User Guide

C Language Programming
Part |I: Basics and Hardware Control

For 8 Series Mobile Computers

Version 4.34

CIPHER Lm

Copyright © 2007~2018 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB
does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

RELEASE NOTES

Version Date Notes

4.34 Apr. 19, 2018 Part |

Modified: Appendix I — Symbology Parameter Table for 2D/Extra Long
Range Reader: Byte 39 [bits 7, 6, 5] default by "0"

Modified: Appendix Il —Scan Engine, 2D or (Extra) Long Range Laser -
ScannerDesTbl[]: Byte 39 [bits 7, 6, 5] default by "0"

Part 11

- None —

4.33 Sep. 26, 2016 Part |

» Modified: Appendix I — SCANNERDESTBL ARRAYS:
Symbology Parameter Table for CCD/LASER/Long Range Reader:
ScannerDesTbl[]:
*Byte 12/14/16/18 [bit 6-0] = Max. 127
*Byte 13/15/17/19 [bit 7-0] = Min. 4
Symbology Parameter Table for 2D/Extra Long Range Reader:
*Byte 14/16/18/23/28/30/32/34 [bit 7]=1, [bit 6]=Reserved,
[bit 5-0]=Max. 55
*Byte 15/17/19/24/29/31/33/35 [bit 7-6]=Reserved,
[bit 5-0]=Min. 4

» Modified: Appendix 1l — SYMBOLOGY PARAMETERS:
Scan Engine, CCD or Laser:
CODE 2 OF 5 FAMILY -
INDUSTRIAL 25:
*Byte 12 [bit 6-0] = Max. 127
*Byte 13 [bit 7-0] = Min. 4
INTERLEAVED 25:
*Byte 14 [bit 6-0] = Max. 127
*Byte 15 [bit 7-0] = Min. 4
MATRIX 25:
*Byte 16 [bit 6-0] = Max. 127
*Byte 17 [bit 7-0] = Min. 4
MSI -
*Byte 18 [bit 6-0] = Max. 127
*Byte 19 [bit 7-0] = Min. 4
Scan Engine, 2D or (Extra) Long Range Laser:
CODABAR -
*Byte 34 [bit 7]=1, [bit 5-0] = Max. 55
*Byte 35 [bit 5-0] = Min. 4
* descriptions for Length Qualification added
CODE 2 OF 5 -
INDUSTRIAL 25 (DISCRETE 25):
*Byte 32 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 33 [bit 5-0]=Min. 4
INTERLEAVED 25:
*Byte 14 [bit 7]=1,[bit 5-0] = Max. 55
*Byte 15 [bit 5-0] = Min. 4
CODE 39 -
*Byte 23 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 24 [bit 5-0]=Min. 4
CODE 93 -
*Byte 28 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 29 [bit 5-0]=Min. 4
MSI -
*Byte 18 [bit 5-0] = Max. 55
*Byte 19 [bit 5-0] = Min. 4
CODE 11 -
*Byte 30 [bit 7]=1,[bit 5-0]=Max. 55
*Byte 31 [bit 5-0]=Min. 4
2D SCAN ENGINE ONLY:
MATRIX 25 -
*Byte 16 [bit 5-0]=Max. 55
*Byte 17 [bit 5-0]=Min. 4

Part 11

- None —

4.32

Mar. 17, 2016 Part |
» Modified: description relating to ‘CD-ROM’ removed
> Modified: Replace “MSI 25” with “MSI”
» Modified: 2.4.1 — Subscript 2, bit 7 added in WedgeSetting()
» Modified: 2.11.1 — 8300 supports SetAutoBklit()
> Modified: Appendix I —
Symbology Parameter Table for CCD/Laser/Long Range Reader —
ScannerDesTbI[] —
*Byte 9 [bit 7—6], [bit 5—~4] = ‘00’ (default)
*Byte 9 [bit 0] = ‘0O’ (default)
ScannerDesTblI2[] — 8000/8300 added
Symbology Parameter Table for 2D/Extra Long Range Reader —
ScannerDesTbl[] —
*Byte 5 [bit 5], [bit 0] = ‘1’ (default)
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘0’ (default)
*Byte 11 [bit 7] = ‘0’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
*Byte 43, bit 4—~1 (0001~1010 illumination level) added for 2D
*Byte 44 [bit 2], [bit 1] = ‘0’ (default) appended
> Modified: Appendix Il — parameters in ScannerDesTbl2[] appended
» Modified: Appendix Il —
Scan Engine, CCD or Laser - MSI —
*Byte 9 [bit 7—~6], [bit 5~4] = ‘00’ (default)
*Byte 9 [bit 0] = ‘0O’ (default)
Scan Engine, 2D or (Extra) Long Range Laser —
*Byte 5 [bit 5], [bit 0] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘0’ (default)
*Byte 11 [bit 7] = ‘0’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
2D Scan Engine Only —
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 44 [bit 2], [bit 1] = ‘0’ (default) appended
> Modified: Appendix 111 —
User Preference —
*Byte 43, bit 4—~1 (0001~1010 illumination level) added for 2D
Part 11
» Modified: Appendix IV —
Bluetooth Examples — Bluetooth HID
Subscript 2, bit 7 in WedgeSetting()
USB Examples — USB HID
Subscript 2, bit 7 in WedgeSetting()

4.31 Jun. 16, 2015 Part |

»
»

Modified: 2.2.1 — ScannerDesTbl2[16] for 8400 added
Modified: Appendix I —
SCANNERDESTBL2[]
*Byte 0 [bit 0~6] 8200/8400 added
*Byte 1 [bit 0~4] 8200/8400 added
*Byte 2 [bit 0~5] 8200/8400 added for Quiet Zone Check setting
Modified: Appendix Il —
SCAN ENGINE, CCD OR LASER (UPC/EAN Families)
*EAN-13 ADDON MODE: Byte O [bit 0—~6] 8400 added

*ADDON SECURITY FOR UPC/EAN: Byte 1 [bit 0—4] 8400 added
for Addon security for UPC/EAN barcodes

Part 11

»
»
»
»

Modified: 1.4.1 — BT_ACL_DEVICE added
Modified: 4.1.3 — Note for 8231 added
Modified: 4.1.4 — Note for 8231 added

Modified: Appendix 111 — Wireless Netorking: descriptions and
table updated with 8231

4.30 Mar. 06, 2015 Part |

4
»
4

Modified: 2.2.1 — variable of ScannerDesThl2[16] added
Modified: 2.2.3 — descriptions for ScannerDesTbl2 added

Modified: 2.4.1 — 3" ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

Modified: Appendix I —

Replace "Symbology Parameter Table I” with “Symbology Parameter
Table for CCD/LASER/Long Ranger Reader” section title,
and "Symbology Parameter Table 11" with “Symbology Parameter
Table for 2D/Extra Long Ranger Reader” section title

Modified: Appendix | — “Symbology Parameter Table for
CCD/LASER/Long Ranger Reader” - ScannerDesTbI2[]: Bytes 2 ~
15 reserved for 8200

Modified: Appendix I — “Symbology Parameter Table for 2D/Extra
Long Ranger Reader” - ScannerDesTbI[]: Bytes 45 ~ 47 reserved
for 8200/8300/8400/8700; Bytes 45 ~ 82 reserved for 8500

Modified: Appendix Il — ScannerDesTbhI2[] (bytes 0 & 1) added in
UPC/EAN Families

Part Il

- None —

4.29 Dec. 16, 2014 Part |

- None —

Part 11

Modified: 1.3.1 — COMM_RF of SetCommType revised

Modified: 5.1 — CipherLab ACL Packet Data added

Modified: 5.2.1 — ACL36xx[16], ReservedByte[204]

New: 5.3.6 ACL Functions

Modified: Appendix IV — ACL added in Bluetooth Examples section

Modified: Appendix 1V — Bluetooth HID/USB HID: Subscript 2, Bit 7
& 6-1 added; keyboard wedge type “15” added

v v v Vv v Vv

4.28 Sep. 19, 2014 Part |
> Modified: 2.10.1 — 8300 supports the “putch” function
» Modified: 2.11.6 - SHAPE_FILL of circle/rectangle corrected
» Modified: 2.15.7 DBF Files and IDX Files —
Iseek_DBF/member_in_DBF/tell_DBF: on error, it returns -1

rebuild_index: ruturns 1 for success; returns O for failure

Part Il
- None —
4.27 Mar. 28, 2014 Part |

> Modified: Appendix I - Symbology Table I: Byte 11, bit 5 (GTIN
-> GTIN-14)

» Removed: Appendix I - Symbology Table I1: Byte 44, bit 2 (GS1
formatting for GS1 DataMatrix)

» Modified: Appendix Il — Scan Engine, CCD or Laser - GTIN: Byte
11, bit 5 (GTIN -> GTIN-14)

» Removed: Appendix Il — 2D SCAN ENGINE ONLY:

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

Part 11
» Modified: 4.1.1 NETCONFIG Structure — parameters added

> Modified: Appendix Il — Wireless Networking table — indexes
57, 58, 91, 92, 93 added

4.26

Feb. 12, 2014

Part |

»

Modified: 2.2.1 Barcod Decoding —

>ScannerDesTblI[45] for 8300

>FsEAN128[2], AlMark[2] arrays added

Modified: 2.10 KEYPAD | 2.10.1 GENERAL —

>8000 supports OSKToggle, SetTrigger commands
Modified: 2.10 KEYPAD | 2.10.6 Enter Key —
>SetMiddleEnter command added for 8400/8700
>SetPistolEnter command added for 8200/8700

Modified: 2.13 Fonts | 2.13.4 Special Fonts —
>8200/8400/8700 support Turkish (SetLanguage command)

Modified: Appendix I — SCANNERDESTBL ARRAY
SYMBOLOGY PARAMETER TABLE 1

>Byte 4, Bit 2: Code39 security

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 7, Bit 1: GS1 formatting for GS1 DataBar Family
>Byte 11, Bit 6: Convert EAN8 to EAN13 Format
SYMBOLOGY PARAMETER TABLE 11

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 25, Bit 4: Enable/Disable TCIF Linked Code 39 ->‘0’ (default)
>Byte 43, Bit 7—5 added

>Byte 44, Bit 7—3 added

Modified: Appendix Il Symbology Parameters —
Scan Engine, CCD or Laser

>Code39: Byte 4, Bit 2

>CODE 128/EAN-128/1SBT 128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 7, Bit 1

>UPC/EAN FAMILIES: Byte 11, Bit 6

>UPC/EAN FAMILIES: UPC-E Triple Check descriptions
SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER
>CODE 128 | UCC/EAN-128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 44, Bit 7—5

2D SCAN ENGINE ONLY

>COMPOSITE CODES | CC-A/B/C: Byte 44, Bit 4~3

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

Modified: Appendix I1l1 Scanner Parameters —
>USER PREFERENCES: Byte 43, Bit 7
>READ REDUNDANCY: Byte 43, Bit 6~5

Part 11

- None —

4.25 Mar 27, 2013 Part |

»

»

Modified: Introduction — the mention of “Chapter 5 Simulator”
removed

Modified: 2.2.2 Code Type — CodeType Table Il: add 8400/8700 2D
scan engine to Composite_CC_A/B/C symbologies (Decimal
47/55/118)

Modified: 2.4.1 WedgeSetting[0] setting value table updated
(11-14)

Modified: 2.10.1 OSKToggle (8400/8700 models supported)
Modified: 2.15.9 GetFilelnfo (8400/8700 models supported)

Modified: Appendix I — Symbology Parameter Table I1: add
8400/8700 2D scan engine to Bit O of Byte 9 (Convert UPC-A to
EAN-13)

Modified: Appendix Il — Scan Engine, 2D or (Extra) Long Ranger
Laser — UPC/EAN Families: add 8400/8700 2D scan engine to Bit O
of Byte 9 (Convert UPC-A to EAN-13)

Part 11

»

Modified: Introduction — the mention of “Chapter 5 Simulator”
removed

Modified: 2.2.2 Socket function — parameters of SOCK_RAW type &
ICMP protocol removed

4.24 Dec. 21, 2012 Part |

»
»
»
»

v

Modified: 2.2.2 CodeType Thale Il — Composite_CC_A/B/C added
Added: 2.10 Keypad — OSKToggle command added
Modified: 2.13.1 Font Size — 20X20 added

Modified: 2.13.4 Special Fonts — CheckFont, GetFont, SetFont
modified

Added: 2.15.9 Get File Information — GetFileInfo command added

Modified: Appendix I — Symbology Parameter Table Il — bit O of
Byte 9 added with “8200 2D” scan engine

Modified: Appendix Il — SCAN ENGINE, 2D OR (EXTRA) LONG
RANGE LASER — UPC/EAN Families — “8200 2D” scan engine added

Part 11

- None —

4.23 Jun. 20, 2012 Part |

»
»

»

New: 2.10.1 General: SetTrigger — 8200/8400/8700 get supported

New: 2.11 LCD: GetBklitLevel(), SetBklitLevel(), SetAutoBklit() —
8400/8700 gets supported

New: Add 8700-Long Range followed to CCD, Laser

Part 11

v v Vv

New: 4.1.2 ScanTime and Reservedflag Parameters
New: 4.1.6 Wi-Fi Profile Structure
New: Appendix Il 48~56 indexes including Note and Example

New: Appendix IV Examples: HID/USB HID — 8400/8700 gets
supported

4.22 Apr. 26, 2012 Part |

» 2.11.1 Properites— add Get/Set BklitLevel and SetAuto Bklit for
8200 and modify lcd_backlit configurations

Part 11
> Add PCAT - Swiss(German) and Hungarian for 8200
4.21 Mar. 14, 2012 Part |

» Modified: Appendix | ScannerDesTbl Array | Symbology
Parameter Table Il - Note: MSI and Code 11 are disabled for 8400
2D scan engine by default

> Modified: Appendix Il Symbology Parameters | Scan Engine,
2D or (Extra) Long Range Laser - Note: MSI and Code 11 are
disabled for 8400 2D scan engine by default.

Part 11

» Modified: 4.1.5. “Wi-Fi Hotspot Search Structure” - 8700 gets
supported

» Modified: 4.2.2. “Scanning for Wi-Fi Hotspots” - 8700 gets supported

Modified: 11.4.7. “Delete Files from FTP Server: FTPDelete” - 8700
gets supported

Modified: 11.4.8. “Rename Files on FTP Server: FTPRename”

v

- 8700 gets supported
- Parameter *NewFileName changes to *RemoteNewFile
- Parameter *OIldFileName changes to *RemoteOldFile

Modified: 11.1.1 “Function” - DOFTP supports FTPDelete() and
FTPRename().

4.20 Dec. 12, 2011 Part |
> New: 2.17 “Graphical User Interface” (for 8700 only)

> Modified: “8780” removed from the manual.

v v v v Vv

Part 11
» New: 4.1.5. “Wi-Fi Search Device Structure” for 8200 & 8400.
New: 4.2.2. “Scannig for Wi-Fi Devices” for 8200 & 8400.

» New functions FTPDelete() and FTPRename() added, updates
involved are:

» Sections 11.0, 11.1.2, 11.2, 11.2.3, 11.3, 11.4 & Index modified.
Sections 11.4.7 & 11.4.8 newly inserted.

Modified: 11.1.1. Parameter “via3dot5G” newly added to DoFTP
function.

» Modified: “8780” removed from the manual.

4.10 Jul. 07, 2011 Part |
> Modified: 2.14 Memory — 8700’s updated
Part 11
» Modified: 5.1 Bluetooth Profiles Supported — Bluetooth HSP for 8200
removed

> Modified: Appendix IV Examples — Bluetooth HSP (8200 Only)
removed

4.00 Mar. 21, 2011 C Programming Guide split into Part I: Basics and Hardware Control, and
Part 11: Data Communications

4
»
4

Modified: add 8200 support
Modified: add 8700 support
Modified: remove 8580/8590

Part |

v v v v v Vv

1.3.3 Floating Types — add “About Floating-Point”

2.1.4 System Information — 8200 only has 8200lib.lib
2.1.4 System Information — BootloaderVersion() for 8200
2.1.6 Program Manager — UpdateBootloader() for 8200
2.1.6 Program Manager — UpdateKernel() for 8200

2.5 Buzzer — on_beeper() for 8200, set_beeper_vol() allows setting
8200’s speaker mute

2.10.5 FN Key — Auto Resume mode for 8300 allows re-pressing the
function key to exit the function mode

2.10.6 ENTER Key — for 8200 only
2.10.6 ENTER Key — SetMiddleEnter()

Part 11

Add support of Bluetooth HSP and FTP for 8200

1.3.1 Functions — SetCommType() supports USB Virtual COM_CDC
and Bluetooth HSP for 8200

9.1.2 USB Virtual COM — add support of USB Virtual COM_CDC for
8200

10 GPS Functionality — add support of GPS for 8700
11 FTP Functionality

CONTENTS

I S N I -3-
INTRODUCT IO N tiitisssnsssnsssans 1
DEVELOPMENT ENVIRONMENT ..ot ciictrcsersssnes 3
1.1 Directory Structure & VariabIes ... 4
T I B T =T] VS U (6 = S 4
1.1.2 Environment VariabIes ... 6

1.2 DeVEIOPMENT FIOW.......ooiiieeeeee ettt 7
1.2.1 Create Your OWn C SOUICE Program......ccccererrereernmennesesseesesesseessessesssesnensens 8
1.2.2 COMPIIE.c e s e e e s r e r e e e e e 9
F.2.3 LINK e e e e bR ene s 10
1.2.4 FOrmMat CONVEISION ..ottt sie ettt ae e e e 13
1.2.5 Download Program to Flash Memory ... 13

G B O 00 0 0] o 11 [T SRS SRR 14
G It R Y 4 o N Y/ 6= YRS 14
1.3.2 Representation Range Of INTEQErS ... 14

G TG B e (o TN A1 1o TR 1Y/ € 1 TSRS 15
RGN [o [0 0T 1 S USSR 17
1.3.5 Register and Interrupt HandliNg ..o 17
1.3.6 RESEIVEA WOIAS ..ottt ettt s se e e e e e e et e sne e e e sesaeenens 17
1.3.7 Extended ReServed WOIAS ...t 18
1.3.8 Bit-FIeld USAQE ..o 18
MOBILE-SPECIFIC FUNCTION LIBRARY ...t ssssssssnssasns 21
At TS V41 1= o S 22
22t R I =1 1= = | S 22
2.1.2 POWEr ON RESET (POR) ..ot e e s snesn e 26
2.1.3 System Global Variables............o e 27
2.1.4 System INTOIrMEATION ..o 30

2 TS ST =T o1 U | | Y USSR 37
2.1.6 Program MaNAGETccccerrrererreeseeseesre e sressessesseessesessssssesssssssssssessssasessessesasens 39

2280 R T,/] [0 = T 1Y/ o Yo [S 49
2.1.8 MENU DESIGN ...t e s e e s senresn e s e e e e enenneas 50

2 = ¥- L olo Lo (ST 2 J=T= Vo [(T 54
2.2.1 BarCOde DECOUING......cciererererreerersessesee s sesse s e e ene e s sessesnesne e eeenesneas 54
P O o To [1Y/ o = USSR 58
2.2.3 Scanner Description TabIes ... 62

Pz I o L 1 T = Vo [63
P2 T RV AT U T IO 1 64
2.3.2 REIDParameter STrUCTUIE ..ottt s 65
2.3.3 RFID Data FOIrMALcocoiiieeeeeee ettt s s s e e 65
2.3.4 RFID AUTNENTICATION ...ttt 67

P2 N =Y/ o T T= U o YAV =T o [= S 69

CipherLab C Programming Part |

2.4.1 Definition of the WedgeSetting ArTayccerecceseesescee e e 71
2.4.2 Composition of OULPUL STHNGcccceeeeeeieececee et se e 74
P2 G IR VIVL=To [o 1= = o 101 = 0 S 77
2o T =T U V.= 78
P T R =TT T o IR T =T o [U] g [ol RSP 78
A =TTt o I = To [T Lo Y RSP 78
AR STRC N = T=T=T o I LU = 1 (0] o ISP 78
P2 ST I = g o [T o Y 82
2 AR YA | o] =L o /A [S¥= 1 (= 83
pZ A RV A1 o] = 1 (o] (T 83
A o [T 1 (Y PR 84
P2 S 3 = (== 1 B I 0 TSI o Yo T 85
P2 < T N OF - 1 (Y o [£ 85
P2 < A N = 1 o 87
2.9 Battery & CharQiNg ...cooeoeeeceeeeceieeeecesee s eee st esee et essesaeeseesseeeesse e e eeesseeaeessesaeeeenns 88
2.9.1 BALErY VOITAQEooeoeeeeeeeeerere st s r e n e n e 88
2.9.2 Charging STALUSccociiirerereees e s e snesn e ene e 89
2200 0 B (=) ¢ - Vo 91
P2 O T R 1Y o T=] = | 91
D2 O T2 N o N (= S 96
D2t O TG T o e I =Y S 99
Dt O T A R I =V S 100
D2t 0 TS TV 101
D2t O T G I = S =Y 104
D2t 1 N 5 105
2 N R 0 0T g L= SRS 105
Nt T2 G U 1 = 1 113
DAt I G I =1 o] = 2 115
D I O R O 1= Y R 121
D2t T 1 0 0= T [S 123
D2t I G €T = o] Yo S 125
D2 I 10 18 (o] a TS Yo (== 128
2.12.1 ItemMProperty STrUCTUIE ...ttt e e 128
D22t 022 = T o]0] = 131
2t G T 0]) 132
D I T N o) Y ST 132
2.13.2 Display Capabilitycccccviieiiere ettt e e 132
2.13.3 MUlti-Language FONT ...ttt nn 133
D T o =T = LI 0) S 133
P2 TS T o]) sl =1 [137
2t 0 N /T o ¢ [0 Y 2SS 139
D T = T o 139
D Y o 141
P I R B I N O 1 o 142
2.15 File ManipUIATION.......coceeceeeceee ettt s n e s enns 143

2.15.1 File SYSTEIM ...t n e n e 143

CipherLab C Programming Part |

D2 LS T2 I 1 = Tox €] Y2 143
2.15.3 Fle NAIME ...ttt 143
2.15.4 File Handle (File DESCIIPLON)cccceeeeeeeeeecte et 144

P SR SR = g o] O o To [SRS 144
2.15.6 DAT FIlES... ettt sttt 148
2.15.7 DBF Files and IDX FIleS......ccoiirrreresesie e 162
2.15.8 File Transfer via SD Card......ccirinrerenese e 179
2.15.9 Get File INfOrmMatioN ..ot 186
2.15.10 DEVICE_FILEINFO STrUCTUIE......coeieeeeerereerete e 188

P G ST O - T o USSR 192
2.16.1 File SYSTEIM ...t n e n e 193

P G T2 1] =T ox (0] Y SRS 194
Pt G T B | 1= N = g o S 196
2.16.4 FILEINFO STIUCTUIE ...ttt 197
2.16.5 SD Card ManipulatioN.........ccooceeeeieieereeeeeseresse e 198
2.16.6 MaAsSS StOrage DEVICE ... 216
220 G T A =1 g o g @0 T [217
2.17 Graphical User INTEITACEcccooieeeeee et 220
2.17.1 Text Center AlIgNEMIENT........co e e 221

2 A I | o [SO 222

P2 G B = 7= Tod 1 | 0 11 | [SRS 223
2.17.4 FOIrmM OF DIAIOQ ..oeeeeeeeeeeereree e 224
2.17.5 FIeld SEUTUINGS ...cce et nn e 227
2.17.6 INPUL FIEI. ... 232
P20 N A o 18 [o] | Y=o SRS 235
2.17.8 Get Character for SOt KEY ... 238
2.17.9 Field With TOUCNPA ..o 239
2.17.10 Multi-Line Input (Text Box) with Touchpadccceirnenerenecnenene 242
2.17.11 SIGNALUIE BOX ..coveeiieeeeeererieeiesie e s se e se e sne s sn e s e nn e e e e 244

2 N A 12 I | o T 1 O 246

2 Nt T 1 =)OS 249
22000 4 7 @0 ¢ 1 o T T 0= 252
2.17.15 POP-UP MENU ..o s s ne s se e e s e 255
2.17.16 MESSAQE BOX...ooiirereererereeseree s s e s e e e 258
N N A N A Y/ =T ¢ ¢ [0 = 0) USSR 260
P22t A S % Y[T -1 261
2.17.19 Graphical INfOrmatioN ..o 263
2.17.20 S_BULEON STIUCTUIE.....c.eeieeeeee ettt e e 264
2.17.21 S_FormField StruCtUre........cco et 265
2.17.22 S_MenuDaAta STrUCTUIE ..ottt 266
STANDARD LIBRARY ROUTINES.....cootcctresersserss 267
REAL-TIME KERNELutiiticirisressessssssssssssssssssssssssnsssnes 273
SCANNERDESTBL ARRAYS ... ciictrcersseesssns 281
Symbology Parameter Table for CCD/LASER/Long Range Readercc....... 281
SCANNEIDESTDIL] ..o 281

SCANNEIDESTDIZ2[]...c e 289

CipherLab C Programming Part |

Symbology Parameter Table for 2D/Extra Long Range Readerccccooveceeunee. 291
Yotz U Q=T 01T I o I [291
SYMBOLOGY PARAMETERS. ...ttt cterrrrvesesrrssssssssssssssssssssssssssssssssssssessssssssssssssssessasansees 303
Scan ENGINE, CCD OF LASEY ...ttt e e s ee e ne s e e e s e eeennas 304
(700 =1 0 1= TR 304
Code 2 OF 5 FAMUIY ..o 305
(070 o (=TT S TR 308
(0700 [T 1 TR 310
Code 128/EAN-128/ISBT 128i...... et et e eseee e s e eeseseeeseesnsesssessseasneas 311
Italian/French PRAarmMacCOde ...ttt ettt e 312
5 T 313
NEQALIVE BAICOUE ..o s nn e e e 314
PlESSEY ..ttt R AR R R e e eRe R e R R e e e e n e e enn 314
GS1 DataBar (RSS) FAMIIY ... 315
JLIC=1 (=T 0= o OSSPSR 316

L0] @74 =y N (I = o g 11 1T 316
Scan Engine, 2D or (Extra) Long RaNge LASErcccooiieierieeceeeceeee e 322
(700 F=1 o Y- 1 SF SRS 322
(70 o (T2 o) S TSSO 323
(70T (ST 1o TSSO 324
(70T (ST 1 J RSSO SRS 325
(70T (ST 12 < TSRS 326
S SRS 326
GS1 DataBar (RSS) FamMUlY ...ttt sttt ee e nn 328
UPC/EAN FaMUIIES ..ottt et e st e st e s eesaesanesne s e e seesaneennesnnesnnennnenns 329
0[O O OLoT8] 0T] o I G0 To [TS 331
N[0T 1 @] o 1o 111 =11 T] o S 331
Lo Yo [0 150 TR 333
2D Scan ENGINE ONIY ... 334
L IS 0101 0T (o T = S 334
(@01 0] o To 1] (=T @ Lo 1= 337

D2 B ISV o g1 0T] [o 1= 338
SCANNER PARAMETERSoiticccttrrsresesrssssesrsssssssssssssssssssssssssssssssesssssnsesssssssssssssansessasnsees 341
071 11V, (o Yo L= 3RO 341
(@010 g] o =T E=Te] o TN 1= 01 = 20 342
(R0 I =T 0 [] g o F= T a oY 20 344
LI g g LTI @ U) RS STRPRR 345
O LY gl e = (=T =] L0 =1 TR 345

INTRODUCTION

This C Programming Guide describes the application development process with the “C”
Compiler in details. It starts with the general information about the features and usages
of the development tools, the definition of the functions/statements, as well as some
sample programs.

This programming guide is meant for users to write application programs for CipherLab 8
Series Mobile Computers by using the “C” Compiler. It is organized in chapters giving
outlines as follows:

Part I: Basics and Hardware Control

Chapter 1

Chapter 2

Chapter 3

Chapter 4

“Development Environment” — gives a concise introduction about the “C” Compiler
and the development flow for applications, which provides step-by-step description in
developing application programs for the mobile computers with the “C” Compiler.

“Mobile-specific Function Library” — presents callable routines that are specific to the
features of the mobile computers. For data communications, refer to Part Il.

“Standard Library Routines” — briefly describes the standard ANSI library routines
about which more detailed information can be found in many ANSI related literatures.

“Real Time Kernel” — discusses the concepts of the real time kernel, uC/0S. Users can
generate a real time multi-tasking system by using the uC/0S functions.

Part ll: Data Communications

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

“Communication Ports”
“TCP/IP Communications”
“Wireless Networking”
“lIEEE 802.11b/g”
“Bluetooth”

“GSM/GPRS”

“Acoustic Coupler”
“Modem, Ethernet & GPRS Connection”
“USB Connection”

“GPS Functionality”

“FTP Functionality”

CipherLab C Programming Part |

Chapter 1
DEVELOPMENT ENVIRONMENT

The C Language Development Kit for CipherLab 8 Series Mobile Computers contains six
directories, namely, BIN, ETC, INCLUDE, LIB, README and USER. To set up the C
language development environment on your PC, you may create the \C_Compiler
directory from the root directory first. Then, simply copy the above six directories from
the compressed file to the \C__Compiler directory.

To run the compiler, one of the Windows operating systems is required:

Windows 2000
Windows XP
Windows Vista
Windows 7

v Vv Vv Vv

IN THIS CHAPTER

1.1 Directory Structure & Variables...... ..., 4
1.2 Development FIOW......c.eiiii e 7
1.3 C COMPIIY e 14

CipherLab C Programming Part |

1.1 DIRECTORY STRUCTURE & VARIABLES

1.1.1 DIRECTORY STRUCTURE

The purposes and contents of each directory are listed below.

’;J i ’J BIM for Vista-Win7
’;J Download Utlities "J ETC

’;J Font ’J IMNCLUDE

’;J kernel "J LIE

’;J Link file "J Manual

’;J README "J Sample Program

e

C Modification history. txt
Text Document

1KB

\

BIN

This directory contains executable files. Usage will be described further in later sections.
» The BIN folder is for Windows 2000 and Windows XP.
» The BIN for Vista-Win7 folder is for Windows Vista and Windows 7.

» A number of execution files for compilation, linking, and so on.

ASM900.EXE CC900.EXE EZDRIVER.DLL MAC900.EXE
THC1.EXE THC2.EXE TUAPP.EXE TUCONV.EXE
TUFAL.EXE TULIB.EXE TULINK.EXE TUMPL.EXE

Note: Depending on your operation system, please make sure to use the correct link file.

ETC

This directory contains help and version information of the C Compiler.

Chapter 1 Development Environment

INCLUDE

This directory contains header files.

» 1 header file for mobile-specific library: e.g. 8500lib.h
» 1 header file for Real-Time Kernel Library: UCOS.H

» “C” header files for standard library routines:

CTYPE.H ERRNO.H FLOAT.H LIMITS.H MATH.H
STDARG.H STDDEF.H STDIO.H STDLIB.H STRING.H
TCPIP.H

LIB

This directory contains library object code files.

» “C” standard library: C900ml.lib

» Mobile-specific library: 8000lib.lib, 8200lib.lib, 8300lib.lib, 8400lib.lib, 8500lib.lib and 8700lib.lib

Readme

This directory contains C Compiler version update and supplemental information.

Sample Program

This directory contains source code of the user program or other sample programs.

Download Utilities

This directory contains utilities for downloading a program (.SHX, .SYN) or font file (.SHX) to the
mobile computer.

Note: USB Virtual COM also shares the interface option of RS-232/IrDA.

Font

This directory contains available font files.

Kernel

This directory contains kernel programs.

Link File

This directory contains link files for (1) Windows 2000, XP and (2) Windows Vista, Windows 7.

Manual

This directory contains programming documents.

CipherLab C Programming Part |

1.1.2 ENVIRONMENT VARIABLES

Before using the compiler, some environmental variables must be added to
autoexec.bat.
» path = C:\C_Compiler\BIN (or your own path)
So that all executable files (.EXE and .BAT) can be found.
» set THOME = C:\C_Compiler\
This is a must for the compiler to locate all necessary files.
> set tmp = C:\tmp

This is the temporary working directory for the compiler and linker (for memory and
file swapping). Skip this if tmp is already specified.

Chapter 1 Development Environment

1.2 DEVELOPMENT FLOW

The development process is much like writing any other C programs on PC. The flow is
illustrated as below.

TEXT EDITOR

Program (.C)

v v

Ir'._C Language 50urce]

@ R Compile E
Assembly List File it
ASM) Message
(- (CERR.LST)
Relocatable g /
Object File -~ ™\ ')
(-REL) Linker Map File Library Object File
{.LNK) (.L1B)
_ .J . J

'

— TULINK.EXE

Absolute Object
(.ABS)

v

TUCONV.EXE

Motorola
S Format
{-8HX)

v

Download.EXE or
IRLoad.EXE

Target Machine
Flash Memaory

CipherLab C Programming Part |

1.2.1 CREATE YOUR OWN C SOURCE PROGRAM

The first step is to create or modify the desired C programs using any text editors. We
recommend that you use “.C” as the file extension and create program files under the
USER directory so that you can use the USER directory as the working directory. We
also recommend that you divide the whole program into modules while retaining function
integrity, and put modules into separate files to reduce compilation time.

Chapter 1 Development Environment

1.2.2 COMPILE

To compile the C programs, use cc900 command in the directory of the target file. For
the usage of cc900 command and the options, please refer to “cc900.hlp” in the ETC
subdirectory.

Cc900 —Joptions] FILENAME.C

The batch file “Y.BAT” which can be found under the USER directory has been created to
simplify the compiling process.

Y FILENAME.C

This batch file invokes the C compilation program which in turn calls many other
executable programs under the BIN directory. As these programs are invoked by the
compiler sequentially, their usages can be ignored. Also, many parameters are set in
calling the compiler driver to accommodate target machine environments. It is
recommended to use the Y.BAT file directly. If you attempt to write your own batch file,
remember to put the same parameters as shown below.

> -XAl, -XC1, -XD1, -Xp1l: alignment setting, all 1

» -XF: no deletion of assembly file, if it is not necessary to examine the assembly file.
This option can be removed.

» -03: set optimization level (can be 0 to 3, but not the maximum optimization). If
code size and performance is not a problem, this option can be removed which will
then set to the default — OO, that is, no optimization at all. If optimization is enabled,
care must be taken that some instructions might be optimized and removed. For
example,

Test()
{

unsigned int old_msec;
old_msec = sys msec;
while (old_msec == sys_msec);

}

This routine waits until sys _msec is changed. And sys_msec is a system variable that is
updated each 5 milliseconds by background interrupt. If optimization is enabled, this
whole routine is truncated as it is meaningless (which is a dead-loop). To avoid this, the
type identifier “volatile” can be used to suppress optimization.

» -c: create object but no link
) -e cerr.lst: create error list file “CERR.LST”

After compilation is completed, a relocatable object file named “program_name.REL” is
created which can be used later by the linker to create the executable object program. As
the compiler compiles the program into assembler form during the process, an
accompanying assembler source file “program_name.ASM” is also created. This file helps
in debugging if necessary. If any error occurs, they will be put into the file “CERR.LST”
for further examination.

CipherLab C Programming Part |

1.23 LINK

If the C source programs are successfully compiled into relocatable object files, the linker
must be used to create the absolute objects, and then the file can be downloaded to the
target machine’s flash memory for execution. However, a linker map file must be
created.

TULINK FILENAME.LNK

This map file “FILENAME.LNK” is used to instruct the linker to allocate absolute addresses
of code, data, constant, and so on according to the target machine environments. This is
a lengthy process as it depends on the hardware architecture. Fortunately, a sample
linker map file is provided and few steps are required to customize it for your own need,
while leaving hardware-related stuff unchanged.

From the following sample linker file, you can see that only the file names need to be
changed (underlined & boldfaced sections). If the linking is successful, an absolute object
file named “FILE1.ABS” is created. Besides, a file named “FILE1.MAP” lists all code and
variable addresses, and, error messages if there is any.

Sample Linker File

-Im —Ig -1l /* For Windows 2000, XP: parameters for TULINK, do not change */

/* For Windows Vista, Windows 7: remove “-1g” */

Filel.rel /* your C program name */
File2.rel /* your C program name */
FileN.rel /* your C program name */

- \Lib\8xxxlib.lib /* 8xxx Function library */
-\Lib\c90oOml .lib /* C standard library */
/***/
/* User could provide suitable values */
/* to the following variables */
/***/
MainStackSize = 0x001000;

HeapSize = 0x000100;

MaxSysRamSize = 0x020000;

/***/

/* Do not modify anything beyond this line */

/***/

10

memory

{

Chapter 1 Development Environment

IRAM: org = 0x001100, len = 0x000e00 /* 0x1000 — Ox10ff IntVec */

RAM : org = 0x205000, len = 0x3b000
ROM : org = OxfO0000, len = 0x0e0000
¥
sections
{
code org = Oxf00000 : {
*(f_head)
*(f_code)
} > ROM

area org = 0x205000 : {
. += MainStackSize;
. += HeapSize;
*(f_bcr)
*(f_area)

} > RAM

/* 0x1f00 — Ox1ffFF Stack */

data org=org(code)+sizeof(code) addr=org(area)+sizeof(area) : {

*(f_data)

} /* global variables with initial values */

xcode org = org(data) + sizeof(data) addr

= addr(data) + sizeof(data) : {

(f_xcode) / code reside on RAM */

RAM_OVERFLOW_CHECK org = org(area) + MaxSysRamSize : {

. +=1;

} > RAM

icode org = org(xcode) + sizeof(xcode) addr = 0x001100 : {

*(f_icode)

/* code reside on IRAM */

11

CipherLab C Programming Part |

const org = org(icode) + sizeof(icode) : {
*(f_const)
*(f_tail)

} > ROM

¥

ActualRamSize = (addr(xcode) + sizeof(xcode)+3)/4*4 — 0x205000 ;
/* long boundary */

SysRamEnd = org(area) + MaxSysRamSize; /* long boundary */
DataRam = addr(data);

XcodeRam = addr(xcode);

IcodeRam = addr(icode);

HeapTop = org(area) + MainStackSize;

/* End */

12

Chapter 1 Development Environment

1.2.4 FORMAT CONVERSION

The absolute object file created by TULINK is in TOSHIBA’'s own format. Before being
downloaded to the target machine, it must be converted to the Motorola S format by
using the “TUCONV” utility.

TUCONV —Fs32 —o FILENAME.shx FILENAME.abs
The file extension .SHX is a must for the code downloader.

The batch file “Z.BAT” which can be found under the USER directory has been created to
simplify the linking and format conversion process. Simply run the batch file:

z

The target executable file (with SHX extension) will then be generated if no error is
found.

1.2.5 DOWNLOAD PROGRAM TO FLASH MEMORY

Now that the Motorola S format object file FILENAME.shx is created successfully, it can
be downloaded to the flash memory for testing. Run the ProgLoad.exe utility and
configure the following parameters properly.

» File Name: Specify the absolute object file.

» COM Port: Select the appropriate COM port for transmission.

» Baud Rate: Supported baud rates are 115200, 57600, 38400, 19200, and 9600.
> Parity: None

» Data Bits: 8

» Flow Control: None

Note: The selected baud rate, parity, data bits, etc. must match the COM port settings of
the target machine.

13

CipherLab C Programming Part |

1.3 C COMPILER

This C compiler is for TOSHIBA TLCS-900 family 16-bit MCUs, and it is mostly ANSI
compatible. Some specific characteristics are presented in this section.

1.3.1 SIZE OF TYPES
Types Size in Byte
char, unsigned char 1

short int, unsigned short int, int, unsigned int
long int, unsigned long int

pointer

A AN

structure, union
1.3.2 REPRESENTATION RANGE OF INTEGERS

Regarding the representation range of the values of integer types, macros are defined in
the header file <limits.h> as follows.

Macro Name Contents

CHAR_BIT number of bits in a byte (the smallest object)
SCHAR_MIN minimum value of signed char type
SCHAR_MAX maximum value of signed char type
CHAR_MIN minimum value of char type

CHAR_MAX maximum value of char type

UCHAR_MAX maximum value of unsigned char type
MB_LEN_MAX number of bytes in a wide character constant
SHRT_MIN minimum value of short int type

SHRT_MAX maximum value of short int type
USHRT_MAX maximum value of unsigned short int type
INT_MIN minimum value of int type

INT_MAX maximum value of int type

UINT_MAX maximum value of unsigned int type
LONG_MIN minimum value of long int type

LONG_MAX maximum value of long int type

ULONG_MAX maximum value of unsigned long int type

14

Chapter 1 Development Environment

1.3.3 FLOATING TYPES

Float data types are supported and conform to IEEE standards.

Types Size in Bits
float 32

double 64

long double 80
About Floating-Point

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. It is therefore very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact form. All other values must be
approximated by the closest representable value. For example, even common decimal fractions,
such as decimal 0.0001, cannot be represented exactly in binary. (0.0001 is a repeating binary
fraction with a period of 104 bits!)

// Floating-point error

float A = 99999.1;

float B = 99999.0;

printf(“%.04F", A); // 1t prints “99999.1016” instead of “99999.1000".
printf(“%.04f’,(A-B) * 100); // 1t prints “10.1563” instead of “10”.

printf(""(A-B)==0.1?%s.", ((A-B)==0.1)?"Equal’:"'Not Equal’);
// 1t prints “(A-B)==0.17?Not Equal”.

We suggest not handling floating-point values directly but converting them to integers first. After
calculations, convert integers to real numbers if necessary. For example, in order to process the
expression of 1.82-1.8, you are advised to modify the expression to something like 182-180, and
then divide the result by 100 to get the actual result of 0.02.

When the floating-point values are displayed, printed, or used in calculations, they lose precision.
Instead of using floating-point, use integer or long to perform arithmetical or logical calculations. If
there is a need to display a fractional number on the screen, convert the integer or long to a string
and add the decimal point in the proper place. For example,

long A=999991;
long B=999990;

long C=(A-B)*100;

printf('[%1d_%1d]",A/10,A%10); // 1t prints “99999_1".
printf("'[%ld.%1d]",C/10,C%10); // 1t prints “10.0”.

15

CipherLab C Programming Part |

IEEE Format

Float is an approximate numeric data type, as defined by the standards. Floating-point
representations have a base and a precision p. If base is 10 and p is 3, then the number 0.1 is
represented as 1.00 x 101, If base is 2 and p is 24, then the decimal number 0.1 cannot be
represented exactly, but is approximately 1.10011001100110011001101 x 274,

Precision refers to the number of digits that you can represent. The precision of the binary formats
is one greater than the width of its significand, because there is an implied (hidden) 1 bit. A “double
precision” (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is
implied), an exponent of 11 bits, and one sign bit. Positive floating-point numbers in this format
have an approximate range of 1073% to 103°® (because 308 is approximately 1023 x log;(2), since
the range of the exponent is [-1022,1023]). The complete range of the format is from about
—10%% through +103%®,

Name Common Name Base Digits E min E max | Decimal digits Decimal E max
binary32 | Single precision | 2 23+1 -126 +127 7.22 38.23
binary64 @ Double precision | 2 52+1 -1022 +1023 15.95 307.95

16

Chapter 1 Development Environment

1.3.4 ALIGNMENT

Alignment of different types can be adjusted. This is to facilitate CPU performance by
trading off memory space. However, when all target systems utilize 8-bit data bus, the
alignment does not improve performance and is fixed to 1 for all types. In invoking the C
compiler, driver (-XA1l, -XD1, -XC1, and —Xp1) is specified.

1.3.5 REGISTER AND INTERRUPT HANDLING

Register and interrupt handling are possible through C. However, they are prohibited as
all the accessing to system resources is supposed to be made via CipherLab library
routines.

1.3.6 RESERVED WORDS

These are the reserved words (common to all Cs) in general.

Auto break case char const
continue default do double else
enum extern float for goto

if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while

17

CipherLab C Programming Part |

1.3.7 EXTENDED RESERVED WORDS

These are the reserved words specific to this C compiler and all of them start with two
underscores (“_ _").

__adcel ___cdcel _ _near _ _far
__tiny __asm __io

__XWA __XBC __XDE __XHL
__XIX X1y X1z __XSP

_ WA __BC _ _DE __HL
__IX _ Iy __1z _

o _ __C __D

_E L] __SF
__ZF __VF __CF

__DMASO __DMAS1 __DMAS2 __DMAS3
__DMADO __DMAD1 __DMAD2 __DMAD3
__DMACO __DMAC1 __DMAC2 __DMAC3
__DMAMO __DMAM1 __DMAM2 __DMAM3
_ _NSP __XNSP __INTNEST

1.3.8 BIT-FIELD USAGE

The following types can be used as the bit field base types. The allocation is made as
shown in the illustrations.

Types Size in Bits
char, unsigned char 8

short int, unsigned short int, int, unsigned int 16

long int, unsigned long int 32

The bit-field can be very useful in some cases. However, if memory is not a concern, it is
recommended not to use the bit-fields because the code size is downscaled at the cost of
degraded performance.

18

Chapter 1 Development Environment

Fields Stored from the Highest Bits

struct fieldl { unsigned int a:l1;
unsigned int b:2;
unsigned int c:3;
unsigned int d:1;
unsigned int e:d; 1}
MSE LSB

15|14(1312(11|10| 9|87 |6 |54 3210

Fields Stored from the Highest Bits

If the base type of a bit field member is a type requiring two bytes or more (e.g. unsigned int), the
data is stored in memory after its bytes are turned upside down.

Higher 8 bits Lower 8 bits
1514131211109 |18 (7|6 (5|4 (3]2(1]0

Offset

+1

Different Types (Different Size)

A bit field with different type is assigned to a new area.

struct fieldd { unsigned char a:2;
unsigned short b:3; }

MSE LSB

f|l6 |5 |4 (32|10
d
MSEB LSB
B4 13 1211028176 |54 3210
b

19

CipherLab C Programming Part |

Different Types (signed/unsigned)

LSB

struct fieldd { signed short a:2;
unsigned short b:3;
signed short c:4; }

MSE
1514 13121110 @ |8 |7 |6 |5 |4
a b C

Different Types (Same Size)

struct fields { signed short a:5;
unsigned int b:d; 3}
MSEB
1514131211109 |18 | 7|6 |5 |4
a
MSEB
1514131211109 |18 | 7|6 |5 |4
b

20

MOBILE-SPECIFIC FUNCTION LIBRARY

Chapter 2

There are a number of mobile-specific library routines to facilitate the development of the
user program. These functions cover a wide variety of tasks, including communications,
show string or bitmap on the LCD, buzzer control, scanning, file manipulation, etc. They
are categorized and described in this section by their functions or the resources they

work on.

The function prototypes of the library routines, as well as the declaration of the system
variables, can be found in the library header file, e.g. “8300lib.h”. It is assumed that the

programmer has prior knowledge of the C language.

IN THIS CHAPTER

2t S V5 =] o o 22
2.2 Barcode ReaAdEruuuieee e 54
2.3 RFID REAUET ...t ettt eeieeeens 63
2.4 Keyboard Wedge......c.veiiiiii e et e e aaae 69
2.5 BUZZEN .. e 78
2.6 LED INAiCAtOr ... 82
2.7 Vibrator & Heater.......ooviii e 83
2.8 Real-Time ClOCKu et 85
2.9 Battery & Charging.....cooeeeeiiie i eee e eaeeenea 88
2.00 KeYPaA i 91
200 150 1 0 T 105
2.12 TOUCN SCIrEEN ...t 128
2. A8 FONES o et 132
2.0 MEIMIOIY et e 139
2.15 File Manipulationcooeiiiiiiii i 143
2.06 SD Card ... e 192
2.17 Graphical User Interfacecocooviiiiiiiiiiiiiiiie s 220

21

CipherLab C Programming Part |

2.1 SYSTEM

2.1.1 GENERAL

_KeepAlive___

Purpose To let the user program keep on running and prevent it from being
automatically shut down by the system.

Syntax void _KeepAlive___ (void);

Example

Return Value

// set 1 minute
// load the AUTO_OFF value

AUTO_OFF = 60;
_KeepAlive__ Q;

None

Remarks Whenever this routine is called, it will reset the counter governed by the global
variable AUTO_OFF, so that the user program will keep on running without
suffering from being automatically shut down by the system.

See Also AUTO_OFF

ChangeSpeed 8000, 8300

Purpose To change the CPU running speed.

Syntax void ChangeSpeed (int speed);

Parameters int speed int speed

1 Sixteenth Speed 4 Half Speed

2 Eighth Speed 5 Full Speed

3 Quarter Speed
Example ChangeSpeed(4); // Set CPU speed to half speed
Return Value None

Remarks

22

When high speed operation is not necessary, selecting a slow CPU speed can
save battery power.

Chapter 2 Mobile-Specific Function Library

CheckWakeUp 8000, 8200, 8400, 8700
Purpose To check whether a wakeup event occurs not.

Syntax int CheckWakeUp (void);

Example event = CheckWakeUp(Q);

Return Value

For 8000 Series, the return value can be one of the following:

Return Value

(0]

1 POWER_KEY_PRESSED

2 CHARGE_OK

3 TIME_IS_UP

No wakeup event.
The POWER key is pressed.
Charging process has been completed.

The alarm time is up.

For 8400 Series, the return value can be one of the following:

Return Value

(0] No wakeup event.

2 RS232_CABLE_DETECTED RS-232 cable is detected.

4 CHARGING Charging process is ongoing.

8 CHARGE_OK Charging process has been completed.
16 POWER_KEY_PRESSED The POWER key is pressed.

32 | TIME_IS_UP The alarm time is up.

64 USB_DETECTED USB cable is detected.

128 RS232_DATA_RXED Data is received via RS-232.

For 8200/8700 Series, the return value can be one of the following:

Return Value

(0] No wakeup event.

2 RS232_CABLE_DETECTED RS-232 cable is detected.

4 CHARGING Charging process is ongoing.

8 CHARGE_OK Charging process has been completed.
16 POWER_KEY_PRESSED The POWER key is pressed.

32 | TIME_IS_UP The alarm time is up.

64 USB_DETECTED USB cable is detected.

23

CipherLab C Programming Part |

GetlOPinStatus 8200, 8400, 8700
Purpose To check the 1/0 pin status.

Syntax unsigned int GetlOPinStatus (void) ;

Example iStatus = GetlOPinStatus();

if (iStatus&0x10)

printf(“RS232 cable is connected.”);
else iIf (iStatus&0x20)

printf(“USB cable is connected.”);
if (iStatus&0x40)

printf(“Adapter is connected.”);

Return Value An unsigned integer is returned, summing up values of each item.
Remarks Each bit indicates a certain item as shown below.
Bit | Value @ Item Remarks
0~ 0x00 NO_CRADLE Not seated in any cradle.
3
0x01 MODEM_CRADLE Seated in the Modem Cradle.
0x02 ETHERNET_CRADLE Seated in the Ethernet Cradle.
0x03 GPRS_CRADLE Seated in the GPRS/GSM Cradle.
0x04 CHARGER_CRADLE Seated in the standard cradle —
Charging & Communication Cradle.
4 0x00 RS232_CABLE_ RS-232 cable is not connected.
DISCONNECTED
0x10 RS232_CABLE_ RS-232 cable is connected.
CONNECTED
5 0x00 USB CABLE USB cable is not connected.
DISCONNECTED
0x20 USB_CABLE_ USB cable is connected.
CONNECTED
6 0x00 ADAPTER_ 5V DC adapter is not connected.

DISCONNECTED
0x40 ADAPTER _CONNECTED 5V DC adapter is connected.

24

Chapter 2 Mobile-Specific Function Library

SetPwrKey

Purpose To determine whether the POWER key serves to turn off the mobile computer
or not.

Syntax void SetPwrKey (int mode);

Parameters int mode
O POWER_KEY_DISABLE The POWER key is disabled.
1 POWER_KEY_ENABLE The POWER key is enabled.

Example SetPwrKey(1);

Return Value None

shut_down

Purpose
Syntax
Example

Return Value

To shut down the system.

void shut_down (void);
shut_down();

None

Remarks You will have to manually press the POWER key to restart the system.
See Also system_restart

SysSuspend

Purpose To enter the suspend mode.

Syntax void SysSuspend (void);

Example SysSuspend() ;

Return Value None

Remarks

When a wakeup event occurs,
depending on the system setting.

the system may resume or restart itself,

system_restart

Purpose
Syntax
Example
Return Value

Remarks

See Also

To restart the system.

void system_restart (void);
system_restart();

None

This routine simply jumps to the Power On Reset point and restarts the system
automatically.

shut_down

25

CipherLab C Programming Part |

2.1.2 POWER ON RESET (POR)

After being reset, a portion of library functions called POR routine initializes the system
hardware, memory buffers, and parameters such as follows.

There must be one and only one “main” function in the C program which is the entry

point of the application program. Control is then transferred to the “main” function
whenever the system initialization is done.

COM Ports

After reset, all COM ports will be disabled.

Reader Ports

After reset, all reader ports will be disabled.

Keypad Scanning

After reset, keypad scanning will be enabled.

LCD

After reset, LCD will be initialized and the displayed contents will be cleared out; the cursor is off
and set to the upper-left corner (0, 0).

) Contrast: Level 4

Backlight

After reset, the backlight settings for the keypad and LCD will be set to:
» Duration: 20 seconds

> Luminosity: Level 2 (= BKLIT_LO)

» Shade effect: Enabled (= BKLIT_SHADE_LO for 8200/8400 Series)

LED

After reset, all the indicators will be set off and reset to default. (= LED_SYSTEM_CTRL for
8200/8400/8700 Series)

Calendar

After reset, Real Time Clock (RTC) will be set to the current time.

Buzzer Volume (for 8200/8400 Series only)

After reset, the buzzer will be set off with its volume reset to default. (= HIGH_VOL)

USB Charging Current (for 8200/8400/8700 Series only)

After reset, the USB charging current will be set to 500 mA.

Others...

Allocate stack area and other parameters.

26

Chapter 2 Mobile-Specific Function Library

2.1.3 SYSTEM GLOBAL VARIABLES
A number of global variables are declared by the system.

Note: sys_msec and sys_sec are system timers that are cleared to O upon powering up.
Do not write to these system timers as they are updated by the timer interrupt.

extern volatile unsigned long sys_msec; // in units of 5 milliseconds

extern volatile unsigned long sys_sec; // in units of 1 second

extern unsigned int AUTO_OFF; // in units of 1 second

This variable governs the counter for the system to automatically shut down the user program
whenever there is no operation during the preset period.

When it is set to 0, the AUTO_OFF function will be disabled.

AUTO_OFF = 60; // set 1 minute
_KeepAlive__Q; // load the AUTO_OFF value

Note: You must call _KeepAlive__ () to reset the counter.

extern unsigned int POWER_ON;

This variable can be set to either POWERON_RESUME or POWERON_RESTART.

> By default, it is set to POWERON_RESUME. Upon powering on, the user program will start from
the last powering off session.

However, in some cases the user program will always restart itself upon powering on — (1) when
batteries being removed and loaded back; (2) when entering System Menu before normal
operation.

extern const int SYSTEM_BEEP [];

This variable holds the frequency-duration pair of the system beep, which is the sound you hear
when entering System Menu.

The following example can be used to sound the system beep.
on_beeper(SYSTEM_BEEP) ;

extern unsigned int BKLIT_TIMEOUT; // in units of 1 second

This variable holds the backlight timer for the LCD when its backlight is set on.
> By default, it is set to 20 seconds.

extern long AIMING_TIMEOUT; // in units of 5 milliseconds

This variable holds the aiming timer for Aiming mode.

» By default, it is set to 200 (= 1 second). Note that O is not allowed!

27

CipherLab C Programming Part |

extern int IrDA_Timeout; 8000, 8300, 8500

This variable governs the timer for the IrDA connection; the system will give up trying to establish
connection with an IrDA device when the timer expires.

Possible value of this variable can be one of the following time intervals.

Value Value

3 seconds (Default) 5 20 seconds
2 8 seconds 6 25 seconds
3 12 seconds 7 30 seconds
4 16 seconds 8 40 seconds
extern int BC_X, BC_Y;

These two variables govern the location of the battery icon. Once their values are changed, the
battery icon will be moved.

8000 Series: Set to (96, 51) by default.
8300 Series: Set to (120, 51) by default.
8200/8400 Series: Set to (144, 152) by default.

4
4
4
P 8500/8700 Series: Set to (144, 152) by default.

extern int KEY_CLICK [4];

This variable holds the frequency-duration pair of the key click.

The following example can be used to generate a beeping sound like the key click.
on_beeper(KEY_CLICK);

extern unsigned char WakeUp_Event_Mask;

It is possible to wake up the mobile computer by one of the following pre-defined events:

8000 Events Meaning
PwrKey_ WakeUp The wakeup event occurs when the POWER key is pressed.
Alarm_WakeUp The wakeup event occurs when the alarm time is up.
8300 Events Meaning
Wedge_WakeUp The wakeup event occurs when the keyboard wedge cable is
connected.
RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected.
Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp ' The wakeup event occurs when the battery charging is done.

For example,
WakeUp_Event_Mask = RS232_WakeUp|Charging_WakeUp;

// wake up by RS-232 connection or battery charging events

28

8400 Events
USB_WakeUp
RS232RXD_WakeUp
RS232_WakeUp
Charging_WakeUp

ChargeDone_WakeUp
PwrKey_ WakeUp
Alarm_WakeUp

For example,

Chapter 2 Mobile-Specific Function Library

Meaning

The wakeup event occurs when the USB cable is connected.
The wakeup event occurs when data is received via RS-232.
The wakeup event occurs when the RS-232 cable is connected.

The wakeup event occurs when the mobile computer is being
charged.

The wakeup event occurs when the battery charging is done.
The wakeup event occurs when the POWER key is pressed.

The wakeup event occurs when the alarm time is up.

WakeUp_Event_Mask = USB_WakeUp|Charging_WakeUp;

8500 Events

Charging_WakeUp

ChargeDone_WakeUp

For example,

// wake up by USB connection or battery charging events

Meaning

The wakeup event occurs when the mobile computer is being
charged.

The wakeup event occurs when the battery charging is done.

WakeUp_Event_Mask = Charging_WakeUp; // wake up by the battery charging event

8200, Events

8700
USB_WakeUp
RS232_WakeUp

Charging_WakeUp

ChargeDone_WakeUp
PwrKey_ WakeUp
Alarm_WakeUp

For example,

Meaning
The wakeup event occurs when the USB cable is connected.
The wakeup event occurs when the RS-232 cable is connected.

The wakeup event occurs when the mobile computer is being
charged.

The wakeup event occurs when the battery charging is done.
The wakeup event occurs when the POWER key is pressed.

The wakeup event occurs when the alarm time is up.

WakeUp_Event_Mask = USB_WakeUp|Charging_WakeUp;

// wake up by USB connection or battery charging events

extern char

ProgVersion[16];

This character array can be used to store the version information of the user program.

» Such version information can be checked from the submenu: System Menu | Information.

Note that your C program needs to declare this variable to overwrite the system default setting.

For example,

const char ProgVersion[16] = “Power AP 1.00";

29

CipherLab C Programming Part |

2.1.4 SYSTEM INFORMATION

These routines can be used to collect information on the components, either hardware or
software, of the mobile computer.

DeviceType
Purpose To get information of modular components in hardware.
Syntax void* DeviceType (void);
Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());
Return Value It always returns a pointer to where the information is stored.
Remarks The information of device type is displayed as “xxxx”; each is a digit from 0 to
9.
Digits X X X X
Types Reader Module |Wireless Module ' Others Reserved
8000 Device Type Meaning
Oxxx No reader
Ixxx CCD scan engine
2XXX Laser scan engine
XOxx No wireless module
X4XX 802.11b/g module
X5XX Bluetooth module
X6XX Acoustic coupler module
XX0x AAA Alkaline battery
XX1X Rechargeable Li-ion battery
8200 Device Type Meaning
Oxxx No reader
Ixxx CCD scan engine
2XXX Laser scan engine
3XXX 2D scan engine
XOxx No wireless module
X5XX Bluetooth module
X8XX 802.11b/g + Bluetooth
8300 Device Type Meaning
(0)7070°¢ No reader
Ixxx CCD scan engine (Not for H/W version 4.0)

30

(8300) 2XxX

4XXX
XOxx
X1IXX
X2XX
X4XX
X5XX
X6XX
X8XX
XX0x
XX1X
XxXxX0

XXx1

Chapter 2 Mobile-Specific Function Library

Laser scan engine

CCD or Laser scan engine (for H/W version 4.0)
Long Range Laser scan engine
No wireless module

433 MHz module

2.4 GHz module

802.11b/g module

Bluetooth module

Acoustic coupler module
802.11b/g + Bluetooth

No RFID

RFID module

None

CCD scan engine (Only for H/W version 4.0)

For hardware version 4.0, when the first digit is “2”, it may refer to CCD or
Laser scan engine. You will need to check the fourth digit: “1” for CCD, “0”

for Laser.
8400 Device Type
OXXX
Ixxx
2XXX
3XXX
X4XX
X5XX
8500 Device Type
OXXX
Ixxx
2XXX
3XXX
4XXX
5XXX
X4XX
X5XX
XX0X

XX1X

Meaning

No reader

CCD scan engine

Laser scan engine

2D scan engine

802.11b/g + Bluetooth
Bluetooth module only
Meaning

No reader

CCD scan engine

Laser scan engine

2D scan engine

Long Range Laser scan engine
Extra Long Range Laser scan engine
802.11b/g + Bluetooth
Bluetooth module only

No RFID

RFID module

31

CipherLab C Programming Part |

8700 Device Type Meaning
Oxxx No reader
Ixxx CCD scan engine
2XXX Laser scan engine
3XXX 2D scan engine
4AXXX Long Range Laser scan engine
X3XX 3.5G + Bluetooth
XA4AXX 802.11b/g + Bluetooth
X5xx Bluetooth module only
XT7XX 802.11b/g + 3.5G + Bluetooth
XX0x No RFID
XX1X RFID module
XX2X GPS module

See Also KeypadLayout

32

Chapter 2 Mobile-Specific Function Library

BootloaderVersion

8200, 8700

Purpose
Syntax
Example
Return Value

See Also

To get the version information of bootloader.

void* BootloaderVersion (void);

printf(“BL:%s”, BootloaderVersion());

It always returns a pointer to where the information is stored.

LibraryVersion

FontVersion

Purpose
Syntax
Example

Return Value

To get the version information of font file.
void* FontVersion (void);

printf(“FONT:%s”, FontVersion);

It always returns a pointer to where the information is stored.

Remarks The font version is “System Font” by default. If any font file is loaded on the
mobile computer, its file name will be provided here as the version information.

See Also CheckFont

GetRFmode

Purpose To find out the current RF mode.

Syntax int GetRFmode (void);

Example GetRFmode();

Return Value

Remarks

The return value can be O — 8, depending on the capabilities of your mobile
computer.

Return Value

0x00 NO_RF_MODEL (8000, 8200, 8300)

Ox01 MODE_433M Obsolete

0x02 MODE_24G Obsolete

0x03 Reserved

Ox04 MODE_802D0T11 (8071, 8370, 8470, 8570, 8770)

0x05 MODE_BLUETOOTH (8062, 8260, 8362, 8400, 8500,
8700)

0x06 MODE_ACOUSTIC (8020, 8021)

0x07 MODE_802D0OT11_GSM (8790)

0x08 MODE_802DOT11_BT (8230, 8330)

HardwareVersion

Purpose
Syntax
Example

Return Value

To get the version information on hardware.
void* HardwareVersion (void);
printf(“H/W:%s”, HardwareVersion());

It always returns a pointer to where the information is stored.

33

CipherLab C Programming Part |

KernelVersion

Purpose
Syntax
Example

Return Value

To get the version information of kernel.

void* KernelVersion (void);
printf(“KNL:%s”, KernelVersion());

It always returns a pointer to where the information is stored.

KeypadLayout

Purpose To get the layout information of keypad.

Syntax int KeypadLayout (void);

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());

Return Value

8000
8200
8300
8400
8500

8700

It returns O for 21-key.
It returns O for 24-key.
It returns O for 24-key; 1 for 39-key.
It returns O for 29-key; 1 for 39-key.

It returns O for 24-key; 1 for 44-key Type |I; 2 for 44-key Type Il
(= 44-TE key).

It returns O for 24-key; 1 for 44-key Type Il (= 44-TE key).

LibraryVersion

Purpose
Syntax
Example

Return Value

To get the version information of mobile-specific library.

void* LibraryVersion (void);
printf(“LIB:%s”, LibraryVersion());

It always returns a pointer to where the information is stored.

8000 Version of standard function library 8000lib.lib
8200 Version of standard function library 8200lib.lib
8300 Version of standard function library 8300lib.lib
8400 Version of standard function library 8400lib.lib
8500 Version of standard function library 8500lib.lib
8700 Version of standard function library 8700lib.lib

See Also BootloaderVersion, NetVersion

ManufactureDate

Purpose To get the manufacturing date.

Syntax void* ManufactureDate (void);

Example printf(“M/D:%s”, ManufactureDate());

Return Value

34

It always returns a pointer to where the information is stored.

Chapter 2 Mobile-Specific Function Library

NetVersion

Purpose
Syntax
Example
Return Value

Remarks

See Also

To get the version information of external library.

void* NetVersion (void);

printf(“NetLIB:%s”, NetVersion());

It always returns a pointer to where the information is stored.

This routine gets the version information of external library, if there is any.
Otherwise, it gets the version information of mobile-specific library.

External Library Mobile-specific Library

8000 @ 8O0OPPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib
8200 @ --- --- --- 8200lib.lib
8300 | 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib
8400 @ 84PPP.lib --- 84WLAN.lib 8400lib.lib
8500 @ --- --- --- 8500lib.lib
8700 @ --- --- --- 8700lib.lib

DeviceType, LibraryVersion, PPPVersion

OriginalSerialNumber

Purpose
Syntax
Example

Return Value

To get the original serial number of the mobile computer.

void* OriginalSerialNumber (void);
printf(“S/N:%s””, OriginalSerialNumber());

It always returns a pointer to where the information is stored.

Remarks Note that if the original serial number is “???”, it means the serial number has
never been modified.

See Also SerialNumber

PPPVersion 8000, 8300, 8400

Purpose To get the version information of external PPP library.

Syntax void* PPPVersion (void);

Example printf(“PPPLIB:%s”, PPPVersion());

Return Value

Remarks

See Also

It always returns a pointer to where the information is stored.
This routine gets the version information of external PPP library, if there is any.
Otherwise, it returns NONE.

External Library Mobile-specific Library

8000 | 8OPPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib
8300 | 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib
8400 @ 84PPP.lib --- 84WLAN.lib 8400lib.lib

DeviceType, LibraryVersion, NetVersion

35

CipherLab C Programming Part |

RFIDVersion

8300, 8500, 8700

Purpose
Syntax
Example
Return Value

See Also

To get the version information of the RFID module.

void* RFIDVersion (void);

printf(“RFID:V%s”, RFIDVersion());

It always returns a pointer to where the information is stored.

DeviceType

SerialNumber

Purpose
Syntax
Example
Return Value

See Also

36

To get the current serial number of the mobile computer.
void* SerialNumber (void);

printf(“S/N:%s”, SerialNumber());

It always returns a pointer to where the information is stored.

OriginalSerialNumber

2.1.5 SECURITY

Chapter 2 Mobile-Specific Function Library

To provide System Menu with password protection so that unauthorized users cannot
gain access to it, you may either directly enable the password protection mechanism
from System Menu or through programming. In addition, a number of security-related
functions are available for using the same password to protect your own application.

CheckPasswordActive

Purpose
Syntax

Example

Return Value

To check whether the system password has been applied or not.
int CheckPasswordActive (void);

if (CheckPasswordActive())

printf(“Please input password:"");

If applied, it returns 1.

Otherwise, it returns O to indicate no password is required.

Remarks By default, System Menu is not password-protected.
CheckSysPassword

Purpose To check whether the input string matches the system password or not.
Syntax int CheckSysPassword (const char *psw);

Example iT (ICheckSysPassword(szlnput))

Return Value

printf(“Password incorrect!!!1”);
If the input string matches the system password, it returns 1.

Otherwise, it returns O.

Remarks If the system password has been applied and you want to use the same
password to protect your application, then this routine can be used to check if
the input string matches the system password.

InputPassword

Purpose To provide simple edit control for the user to input the password.

Syntax int InputPassword (char *psw);

Example char szPsw[10];

Return Value

Remarks

printf(“Input password:™);
if (InputPassword(szPsw))
if (!1CheckSysPassword(szPsw))
printf(“Illegal password!”);
If the user input is confirmed by hitting [Enter], it returns 1.
If the user input is cancelled by hitting [ESC], it returns O.

Instead of showing normal characters on the display, it shows an asterisk (*)
whenever the user inputs a character.

37

CipherLab C Programming Part |

SaveSysPassword

Purpose To save or change the system password.
Syntax int SaveSysPassword (const char *psw);
Example SaveSysPassword(*“12345”);

Return Value If successful, it returns 1.

Otherwise, it returns O to indicate the length of password is over 8 characters.

Remarks The user is allowed to change the system password, but the length of password
is limited to 8 characters maximum.

» If the input string is NULL, the system password will be disabled.

38

Chapter 2 Mobile-Specific Function Library

2.1.6 PROGRAM MANAGER

Program Manager, being part of the kernel, is capable of managing multiple programs
(.shx).

Flash Memory (Program Manager)

It is possible to download multiple programs by calling LoadProgram().
» For 8000/8300/8500 Series, up to 6 programs are allowed.
» For 8200/8400/8700 Series, up to 7 programs are allowed.

But only one of them can be activated by calling ActivateProgram(), and then the program gets
to running upon powering on.

SRAM (File System)

By calling DownLoadProgram(), programs can be downloaded to the file system as well. The
number of programs that can be downloaded depends on the size of SRAM or memory card, but it
cannot exceed 253. After downloading, the setting of ProgVersion[], if it exists, will be used to be
the default file name. Otherwise, it will be named as “Unknown” automatically. This file name may
be changed by rename if necessary.

> A program in the file system can be loaded to Program Manager (flash memory) by calling
UpdateBank(). Its file name, as well as the program version, will be copied to Program
Manager accordingly. Then it can be activated by calling ActivateProgram().

Alternatively, a program in the file system can be directly activated by calling UpdateUser(). If
the file system is not cleared, it allows options for removing the program from the file system.

Program Manager Menu

» Download
This is furnished by calling LoadProgram().

The “Download Via” options may vary by different mobile computers. Below are sample
screenshots for 8500 Series. For 8300 Series, the options are Direct RS-232, Cradle-IR, and
IrDA. For 8200/8400/8700 Series, the options are RS-232, USB Virtual COM, Bluetooth, and SD
Card.

Program Manager pownload
Mm 01f Fone 3p-8500 192
Activate 0z

3 upload 03 _____

ACT uUnknown 192 LoadProgram();

39

CipherLab C Programming Part |

2 IrDA
3 Bluetooth

e Gk Pk b
et Al
00~ &=
2 GOwn
=T=T=11"
CoOQoR
00~ L A
P £ 0D b b
£ 00 VDD
e Lo e
=l=1=1=]

> Activate
This is furnished by calling ActivateProgram().

Program manager Activate Prugram
01f Font JP-8500 192

Uploa (1zh

ActivateProgram();

> Upload

Program Manager menu also allows user to upload programs to another mobile computer or
host computer. Two options are provided after selecting “Upload” from the menu.

1. Upload > One Program
2. Upload > All Programs

However, if the file name (ProgVersion[]) of a program is prefixed with a “#” symbol, it
means the program is protected, and therefore, uploading is not allowed.

40

Chapter 2 Mobile-Specific Function Library

ActivateProgram

Purpose

Syntax

Parameters

Example

Return Value

To make a resident program become the active program (you

keep the original file system).

void ActivateProgram (int Prog, int mode);

int Prog

1—~6 (Max. 6 programs)
1~7 (Max. 7 programs)
int mode

(0] KEEP_FILE_SYSTEM
1 CLEAR_FILE_SYSTEM

Each stands for a resident

8000/8200/8300/8500/8700.

Each stands for a resident
8400.

may clear or

program on

program on

To keep the original file system.

To clear the original file system.

ActivateProgram(3, KEEP_FILE_SYSTEM);

// make program #3 become active and keep the file system

None

Remarks This routine copies the desired program (Prog) in flash memory from its
residence location to the active area, and thus makes it become the active
program.

» The original program resided in the active area will then be replaced by the
new program.

» The POWER key is disabled to protect the system while replacing the
program.

» If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DeleteBank, LoadProgram, Programlinfo, ProgramManager

DeleteBank 8000, 8200, 8300, 8400, 8700

Purpose To delete a user program (.shx) from Program Manager (flash memory).

Syntax int DeleteBank (int slot);

Parameters int slot
1—~6 (Max. 6 slots) Each stands for a resident location on

8000/8200/8300/8700.

1~7 (Max. 7 programs) Each stands for a resident program on

8400.

Example it (DeleteBank(1))

Return Value

See Also

printf(“Delete OK™);
else

printf(“Delete NG);
If successful, it returns 1.

Otherwise, it returns O.

ActivateProgram, LoadProgram, UpdateBank

41

CipherLab C Programming Part |

DownLoadProgram
Purpose To download a user program (.shx) to the file system (SRAM).
Syntax int DownLoadProgram (char *filename, int comport, int baudrate);
Parameters char *filename
Pointer to a buffer where filename of the program is returned.
» This function returns the filename of the result file in SRAM. Need to
reserve a buffer with size of 9 bytes.
> If the file name is identical to an existing program, the execution will fail.
int comport
lor2orb5 COM1 or COM2 or COMS5 for transmission
(COMS5 is only supported on 8200/8400/8700)
int baudrate
BAUD_115200 Baud rate setting must be appropriate.
BAUD_76800
BAUD_57600
BAUD_38400
BAUD_19200
BAUD_9600
BAUD_4800
BAUD_2400
Example val = DownLoadProgram(filename_buffer, 1, BAUD_115200);

Return Value

Remarks

See Also

42

// download user program via COM1 at 115200 bps and return file name
to filename_buffer

If successful, it returns 1.
On error, it returns 0.
Otherwise, it returns -1 to indicate the action is aborted.

For 8300 Series, it is necessary to set the communication type of the specified
port before calling this routine, for example, SetCommType(1, 0) for Direct
RS-232 or SetCommType(1, 2) for Cradle-IR.

» Download via IrDA is allowed for LoadProgram() only, not for this routine.

UpdateBank, UpdateUser

Chapter 2 Mobile-Specific Function Library

LoadProgram
Purpose To download a user program (.shx) to flash memory.
Syntax void LoadProgram (int Prog);
Parameters int Prog
1—-6 (Max. 6 programs) Each stands for a resident program on
8000/8200/8300/8500/8700.
1~7 (Max. 7 programs) Each stands for a resident program on
8400.
Example LoadProgram(3); // load the user program to location #3
Return Value None

Remarks

See Also

Upon calling this routine, the system exits the user application and enters
Program Manager | Download page immediately.

Simply choose “Download Via” and then “Baud Rate” in order to download the
user program to the specified location.

ActivateProgram, DeleteBank, ProgramlInfo, ProgramManager

ProgramiInfo

Purpose
Syntax

Parameters

Example

Return Value

Remarks

See Also

To list program information.

int ProgramlInfo (int slot, char *programtype, char *programname);

int slot

1—~6 (Max. 6 slots) Each stands for a resident location on
8000/8200/8300/8500/8700.

1~7 (Max. 7 slots) Each stands for a resident location on

8400.
char *programtype
Pointer to a buffer where program type is stored.
char *programname
Need to reserve a buffer with size of 13 bytes.

val = Programinfo(2, typebuffer, namebuffer);

If successful, it returns the bank size of program.
Otherwise, it returns O to indicate the program does not exist.
This routine retrieves program information including its size and name.

» The program size, in kilo-bytes, depends on how many memory banks one
program occupies.

» The program name is the same one as shown in the menu of Program
Manager.

> The file type will be returned with a small letter: “c” for a C program, “b”
for a BASIC program, and “f” for a font file.

» Since one bank is 64 KB, the return value will be 64, 128, ..., etc.

ActivateProgram, LoadProgram, ProgramManager

43

CipherLab C Programming Part |

ProgramManager

Purpose To enter the kernel and bring up the menu of Program Manager.

Syntax void ProgramManager (void);

Example ProgramManager(); // jump to the menu of Program Manager

Return Value None

Remarks Upon calling this routine, the user program stops running and jumps to the
kernel, and then Program Manager will take over the control.

See Also ActivateProgram, LoadProgram, ProgramIinfo

UpdateBank

Purpose To copy a user program (.shx or .bin) from the file system (SRAM or SD card)
to Program Manager (flash memory).

Syntax int UpdateBank (const char *filename);

Parameters const char *filename

Pointer to a buffer where filename of the program is stored.
Example val = UpdateBank(“PlayTest”); // update bank via a file in SRAM
val = UpdateBank(““A:\\PlayTest”); // update bank via a file on SD card

Return Value If successful, it returns the residence location of program (slot 1 — 6 of
8000/8200/8300/8500/8700; slot 1 ~ 7 of 8400).

On error, it returns a negative value to indicate a specific error condition.

Return Value

-1 Failed to open file
-2 Invalid file format
-3 No free residence location in Program Manager
-4 No enough free flash
-5 Failed to read program code from source file
-6 Failed to erase/write flash
Remarks > If the file is stored in SRAM, the file name can be 8 bytes at most, which

does not include the null character.

> If the file name specified is identical to that of an existing program in flash
memory, the new program will replace the old one. Otherwise, it will be
stored in an automatically assigned residence location.

» SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “drive A”, such as “A:\\", this routine will search for the file on SD
card. Refer to 2.16.2 Directory for how to specify a file path. In this case, if
the program version of the file (“ProgVersion”) is identical to that of an
existing program in flash memory, the new program will replace the old
one. Note that the file name of the specified file on SD card will be ignored!

See Also DeleteBank, DownLoadProgram, UpdateUser

44

Chapter 2 Mobile-Specific Function Library

UpdateBootloader

8200, 8700

Purpose

Syntax

Parameters

Example

Return Value

Remarks

See Also

To update the bootloader program (.shx or .bin) by copying the update from
the file system (SRAM or SD card) to the bootloader (flash memory).

int UpdateBootloader (const char *filename, int mode, int remove);

const char *filename

Pointer to a buffer where filename of the program is stored.

int mode

(0] KEEP_FILE_SYSTEM To keep the SRAM file system.

1 CLEAR_FILE_SYSTEM To clear the SRAM file system.

int remove

(0] To keep the program in the file system.

1 To remove the program from the file

system.

val = UpdateBootloader(*“8200B100”, KEEP_FILE_SYSTEM, 0);
// update bootloader via a file in SRAM

val = UpdateBootloader(““A:\\8200B100”, KEEP_FILE_SYSTEM, 0);

// update bootloader via a file on SD card

If successful, the device will restart itself.

On error, it returns 0—2 to indicate the error condition encountered.

Return Value

(0]

v v N R

No file
Invalid file format or read fail
The update version is no greater than the current version.

Downgrade is not allowed!

If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

If the file name has a prefix of “A:\\"”, this routine will search for the file on
SD card.

DownLoadProgram, UpdateKernel, UpdateUser

45

CipherLab C Programming Part |

UpdateKernel

Purpose To update the kernel program (.shx or .bin) by copying the update from the file
system (SRAM or SD card) to the kernel (flash memory).

Syntax int UpdateKernel (const char *filename, int mode, int remove);
Parameters const char *filename

Pointer to a buffer where filename of the program is stored.

int mode

(0] KEEP_FILE_SYSTEM To keep the SRAM file system.

1 CLEAR_FILE_SYSTEM To clear the SRAM file system.

int remove

(0] To keep the program in the file system.

1 To remove the program from the file
system.

Example val = UpdateKernel (“8400K100”, KEEP_FILE_SYSTEM, 0);
// update kernel via a file in SRAM
val = UpdateKernel (“A:\\8400K100”, KEEP_FILE_SYSTEM, 0);
// update kernel via a file on SD card
Return Value If successful, the device will restart itself.
On error, it returns 0—5 to indicate the error condition encountered.
Return Value
No file
Invalid file format
No enough free flash
Write flash error
Read file error
The update version is no greater than the current version.

Remarks Except for 8200/8700, downgrade is not allowed!

Except for 8200/8700, it requiress 128 KB free flash before successful
execution. You may need to delete some programs from the flash memory.

» For 8200/8700, if the file is stored on SD card, it requires 1.5 MB free
SRAM file system size before successful execution. You may need to delete
some files.

v v 0ol N W N P O

> If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

> SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “A:\\”, this routine will search for the file on SD card.

See Also DownLoadProgram, UpdateBootloader, UpdateUser

46

Chapter 2 Mobile-Specific Function Library

UpdateUser
Purpose To make a user program (.shx or .bin), from the file system (SRAM or SD
card), become the active program.
Syntax int UpdateUser (const char *filename, int mode,...) ;
Parameters const char *filename
Pointer to a buffer where filename of the program is stored.
int mode
(0] KEEP_FILE_SYSTEM To keep the original file system.
1 CLEAR_FILE_SYSTEM To clear the original file system.
int remove
(0] To keep the program in the file system.
1 To remove the program from the file
system.
Example val = UpdateUser(“PlayTest”, KEEP_FILE_SYSTEM, 0);

Return Value

Remarks

// activate the program in SRAM, and keep the file system as well as
this program

val = UpdateUser(“A:\\PlayTest”, KEEP_FILE_SYSTEM, 0);

// activate the program on SD card, and keep the file system as well
as this program

If successful, the device will restart itself.
On error, it returns 0—3 to indicate the error condition encountered.

Return Value

(0] No file

1 Invalid file format

2 No enough free flash

3 File name length is out of limit

You may call UpdateUser (const char *filename, int mode) or UpdateUser
(const char *filename, int mode, int remove).

This routine copies the desired program from the file system directly to the
active area of Program Manager in flash memory, and thus makes it become
the active program. The original file system may be kept or cleared (mode). If
the file system is kept, the program may be removed from it (remove).

> If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

> If the file is stored on SD card, the file name can be 64 bytes at most,
which includes the null character.

» The original program resided in the active area will then be replaced by the
new program.

» SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “A:\\”, this routine will search for the file on SD card.

47

CipherLab C Programming Part |

» While replacing the program, the POWER key is disabled to protect the
system.

» If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DownLoadProgram, UpdateBank

48

Chapter 2 Mobile-Specific Function Library

2.1.7 DOWNLOAD MODE
DownLoadPage
Purpose To stop the application and force the program to jump to System Menu for

downloading new programs.
Syntax void DownLoadPage (void);

void DownLoadPage (int detect, int comtype, int baudrate);

Example open_com(1l, 0x80); // 38400, N, 8
DownLoadPage(); // enter “Download” mode
Return Value None
Remarks This routine sets the mobile computer to the “Download” mode. The “Download

Via” page will be displayed, and the user can select the COM port and baud
rate for program downloading.

It is possible to pass arguments to suppress the download submenu.

» Parameter #1 (detect): The constant NO_MENU is a must.

> Parameter #2 (comtype): Communication type; refer to SetCommType.
» Parameter #3 (baudrate): Transmission baud rate; refer to open_com.
For example,
DownLoadPage(NO_MENU, COMM_DIRECT, BAUD_115200);

In this case, the mobile computer will be set to the “Ready to download” state
without prompting the download submenu.

49

CipherLab C Programming Part |

2.1.8 MENU DESIGN

SMENU and MENU structures are defined in the header files. User can simply fill the
MENU structure and call prc_menu to build a hierarchy menu-driven user interface.

MENU STRUCTURE

struct SMENU {
int total_entry;

int selected_entry;
int ReturnFlag;

char™ title;

struct SMENU_ENTRY™> entry_list[14];

¥

typedef struct SMENU MENU;

Parameter

Description

int total_entry

int selected_entry

int ReturnFlag

char= title

struct SMENU_ENTRY™* entry_list[14]

MENU_ENTRY STRUCTURE

struct SMENU_ENTRY {
int text_x;

int text_vy;

char* text;

void (*func) (void);

The total number of the menu entries.
> 1-14

The item number of the selected entry.
> 1~ total_entry

The return flag can be 0 or 1.

(1) When the return flag is O, it will return to the current
menu after executing the function calls it contains or
pressing [ESC] to exit its sub-menus.

(2) When the return flag is 1, it will skip the current menu
after executing the function calls it contains or pressing
[ESC] to exit its sub-menus.

The title of this menu.

See MENU_ENTRY Structure

struct SMENU *sub_menu;

¥

typedef struct SMENU_ENTRY MENU_ENTRY;

50

Chapter 2 Mobile-Specific Function Library

Parameter Description

int text_x X coordinate of this menu entry.
int text_y Y coordinate of this menu entry.
char* text The title of this menu entry.

Void (*func) (void)

The function to be executed when this menu entry is
selected.

struct SMENU *sub_menu The sub-menu to be executed when this menu entry is

selected.

prc_menu

Purpose To create a menu-driven interface.

Syntax int prc_menu (MENU *menu) ;

Parameters MENU *menu
SMENU and MENU structures are defined in the header files. User can simply
fill the MENU structure and call prc_menu to build a hierarchy menu-driven
user interface.

Example

// Declare the MENU_ENTRY before the Menu reference
MENU_ENTRY Collect;

MENU_ENTRY Upload;

MENU_ENTRY Download;

MENU MyMenu={3, 1, 0, “My Menu”, {&Collect, &Upload, &Download}};

// Declare function before the MENU_ENTRY reference

void FuncCollect(void);

void FuncUpload(void);

void FuncDownload(void);

MENU_ENTRY Collect = {0, 1, “1. Collect”, FuncCollect, 0};
MENU_ENTRY Upload = {0, 2, “2. Upload”, FuncUpload, O0};
MENU_ENTRY Download = {0, 3, “3. Download”, FuncDownload, 0};

void FuncCollect(void)

{

// to do: add your own program code here
}

void FuncUpload(void)

{

// to do: add your own program code here

51

CipherLab C Programming Part |

Return Value

Remarks

See Also

52

}

void FuncDownload(void))

{

// to do: add your own program code here
}

void main(void)
{

// state_menu
clr_scr(Q;
gotoxy(0, 0);
// Menu list

while (1)
{
prc_menu(&vyMenu) ; //* process MyMenu menu */
}
}

If the return flag in the MENU structure is 1, it returns 1.
Otherwise, it returns O to indicate the ESC key was pressed to abort operation.

This routine creates a user-defined menu. In addition to using [Up]/[Down]
and [Enter] keys to select an item, shortcut keys are provided. The first
character of each item title is treated as a shortcut key. In the above example,
1, 2, and 3 are shortcut keys for these three items (submenus) respectively.
That is, you can press [1] on the keypad to directly enter the submenu
“Collect”.

If the length of a string for a menu item exceeds the maximum characters
allowed in one line per screen, it will be divided into segments automatically.
Then, with the specified interval, these segments are displayed one by one.

> For 8500/8700 Series, its touch screen functionality has each item in a
menu taken as a touchable item. That is, each item can be selected by
directly touching it. If the menu contains more than one page, there will be
a “page-up” icon in the bottom row of every page except the first one. To
go to a previous page or menu, you can touch the current menu title.

GetMenuPauseTime, SetMenuPauseTime

MENU PAUSE TIME

Chapter 2 Mobile-Specific Function Library

GetMenuPauseTime

Purpose

Syntax
Example
Return Value

See Also

To get the interval value for displays of fragments of a string when using
prc_menu.

unsigned long GetMenuPauseTime (void);
interval = GetMenuPauseTime();
If successful, it returns the interval value in units of 5 milli-seconds.

prc_menu

SetMenuPauseTime

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

To set interval between displays of fragments of a string when using prc_menu.
void SetMenuPauseTime (unsigned long time);

unsigned long time

Specify interval in units of 5 milli-seconds.

SetMenuPauseTime(200); // set display interval to 1 second
None

Varying by the screen size and the font size of alphanumeric characters, if the
length of a string for a menu item exceeds the maximum characters allowed in
one line per screen, it will be divided into segments automatically. Then, with
the specified interval, these segments are displayed one by one.

The pause time is set to 2 seconds by default.

prc_menu

53

CipherLab C Programming Part |

2.2 BARCODE READER

The barcode reader module provides options for a number of scan engines as listed
below.

Scan Engine: “v” means supported 8000 8200 8300 8400 8500 8700
1D CCD (linear imager) v v 4 v v v
Standard Laser 4 v 4 v v v
Long Range Laser (LR) --- -— v — v v
Extra Long Range Laser (ELR) --- -—- — -— v —
2D 2D imager - v —_— v v v
2.2.1 BARCODE DECODING

Below are global variables related to the barcode decoding routines. These variables are
declared by the system, and therefore unnecessary to be declared in user programs.

extern unsigned char ScannerDesTbl[23]; // 23 bytes for 8000
ScannerDesTbl[48]; // 48 bytes for 8200, 8300, 8400, 8700

ScannerDesTbl[83]; // 83 bytes for 8500

ScannerDesTbI2[16]; //16 bytes for the 8200, 8400 extended

// scanner description table

The operation of the Decode() routine is governed by this unsigned character array.

» Refer to Appendix | and Il for details of the ScannerDesTbl[] and ScannerDesTbI2[]
variables.

» For 8200/8400/8500/8700 Series, only the first 45 bytes are used currently, and the rest is
reserved!

Note: For 2D or (Extra) Long Range Laser scan engine (except 8700 long range), it is
necessary to enable new settings by calling ConfigureReader().

extern char CodeBuf[1;

After successful decoding, the decoded data is stored in this buffer.

extern char CodeType;

After successful decoding, the code type (for a symbology being decoded) is stored in this variable.

54

Chapter 2 Mobile-Specific Function Library

extern int CodelLen;

After successful decoding, the length of the decoded data is stored in this variable.

To enable barcode decoding capability in the system, the first thing is that the scanner
port must be initialized by calling the InitScanner1() function. After the scanner port is
initialized, the Decode() function can be called in the program loops to perform barcode
decoding.

» For CCD, Laser scan engine or 8700 long range, the barcode decoding routines
consist of 3 functions: InitScannerl1(), Decode(), and HaltScannerl1().

» For 2D or (Extra) Long Range Laser scan engine (except 8700 long range), it is
necessary to enable new settings by calling ConfigureReader() before
InitScannerl().

extern unsigned char FSEAN128[2]; 8000, 8200, 8300, 8400, 8700

This global array inserted between adjacent Application ID (AID) fields as the field separator is
used for GS1 formatting.

extern unsigned char AlMark[2]; 8000, 8200, 8300, 8400, 8700

This global array is used for indicating Application ID Mark (AID Mark). AlMark[0] will be placed at
the left of AID, and AlMark[1] at the right of AID.

ConfigureReader 8200, 8300, 8400, 8500, 8700

Purpose To enable new settings on the scan engine according to the ScannerDesTbl
array.

Syntax int ConfigureReader (void);

Example memcpy(ScannerDesTbl, DefaultSetting, sizeof(DefaultSetting));

if (ConfigureReader())

printf(“Set 0K™);

else

printf(“Set NG”);
Return Value If successful, it returns 1.

Otherwise, it returns O.

Remarks For new settings of ScannerDesThl to take effect on (Extra) Long Range Laser
or 2D scan engine, it is necessary to call this function.

Note that this function shall be called before InitScannerl() or after
HaltScannerl.

See Also ScannerDesTbl

55

CipherLab C Programming Part |

Decode

Purpose To perform barcode decoding.

Syntax int Decode (void);

Example while(1) {
if (Decode())
break;
}

Return Value If successful, it returns an integer whose value equals to the string length of
the decoded data.
Otherwise, it returns 0.

Remarks Once the scanner port is initialized by calling InitScannerl(), call this routine to
perform barcode decoding.

» This routine should be called constantly in user program loops when
barcode decoding is required.

» If barcode decoding is not required for a long period of time, it is
recommended that the scanner port should be stopped by calling
HaltScannerl1().

» If the Decode function decodes successfully, the decoded data will be
placed in the string variable CodeBuf[] with a string terminating character
appended. And integer variable CodeLen, as well as the character variable
CodeType will reflect the length and code type of the decoded data
respectively.

See Also HaltScannerl, InitScannerl

HaltScannerl

Purpose To stop the scanner port from operating.

Syntax void HaltScannerl (void);

Example HaltScannerl();

Return Value Once the scanner port is stopped from operating by this routine, it cannot be

restarted unless it is initialized again by calling InitScanner1().

» It is recommended that the scanner port should be stopped if barcode
decoding is not required for a long period of time.

Remarks None

See Also Decode, InitScannerl

56

Chapter 2 Mobile-Specific Function Library

InitScannerl

Purpose
Syntax

Example

Return Value
Remarks

See Also

To initialize the scanner port.

void InitScannerl (void);

InitScannerl();

while(1) {

it (Decode())

break;

}

The scanner port will not work unless it is initialized.
None

Decode, HaltScannerl

57

CipherLab C Programming Part |

2.2.2 CODE TYPE

The following tables list the values of the variable CodeType.

Note: For CCD or Laser scan engine, the variable OrgCodeType is provided for
identifying the original code type when a conversion has occurred.

CodeType Table I:

DEC ASCII Symbology Supported by Scan Engine

63 ? Coop 25 8000, 8200, 8300, 8400, 8700
-CCD, Laser, 8700-Long Range

64 @ ISBT 128 CCD, Laser, 8700-Long Range
65 A Code 39 CCD, Laser, 8700-Long Range
66 B Italian Pharmacode CCD, Laser, 8700-Long Range
67 C CIP 39 (French Pharmacode) CCD, Laser, 8700-Long Range
68 D Industrial 25 CCD, Laser, 8700-Long Range
69 E Interleaved 25 CCD, Laser, 8700-Long Range
70 F Matrix 25 CCD, Laser, 8700-Long Range
71 G Codabar (NW7) CCD, Laser, 8700-Long Range
72 H Code 93 CCD, Laser, 8700-Long Range
73 | Code 128 CCD, Laser, 8700-Long Range
74 J UPC-EO / UPC-E1 CCD, Laser, 8700-Long Range
75 K UPC-E with Addon 2 CCD, Laser, 8700-Long Range
76 L UPC-E with Addon 5 CCD, Laser, 8700-Long Range
77 M EAN-8 CCD, Laser, 8700-Long Range
78 N EAN-8 with Addon 2 CCD, Laser, 8700-Long Range
79 (0] EAN-8 with Addon 5 CCD, Laser, 8700-Long Range
80 P EAN-13 / UPC-A CCD, Laser, 8700-Long Range
81 Q EAN-13 with Addon 2 CCD, Laser, 8700-Long Range
82 R EAN-13 with Addon 5 CCD, Laser, 8700-Long Range
83 S MSI CCD, Laser, 8700-Long Range
84 T Plessey CCD, Laser, 8700-Long Range
85 U GS1-128 (EAN-128) CCD, Laser, 8700-Long Range
86 \Y, Reserved -—-

87 w Reserved ---

88 X Reserved -—-

89 Y Reserved -—-

58

Chapter 2 Mobile-Specific Function Library

90 Z Telepen CCD, Laser, 8700-Long Range
91 [GS1 DataBar (RSS) CCD, Laser, 8700-Long Range
92 \ Reserved -—-
93] Reserved -

A variable, OrgCodeType, is provided for identifying the original code type when a
conversion has occurred.

For example, if “Convert EAN-8 to EAN-13” is enabled, an EAN-8 barcode is decoded to
EAN-13 barcode. Its code type is EAN-13 now and the original code type is EAN-8.

OrgCodeType Table:

DEC ASCII Symbology Supported by Scan Engine

65 A UPC-E CCD, Laser, 8700-Long Range
66 B UPC-E with Addon 2 CCD, Laser, 8700-Long Range
67 C UPC-E with Addon 5 CCD, Laser, 8700-Long Range
68 D EAN-8 CCD, Laser, 8700-Long Range
69 E EAN-8 with Addon 2 CCD, Laser, 8700-Long Range
70 F EAN-8 with Addon 5 CCD, Laser, 8700-Long Range
71 G EAN-13 CCD, Laser, 8700-Long Range
72 H EAN-13 with Addon 2 CCD, Laser, 8700-Long Range
73 | EAN-13 with Addon 5 CCD, Laser, 8700-Long Range
74 J UPC-A CCD, Laser, 8700-Long Range
75 K UPC-A with Addon 2 CCD, Laser, 8700-Long Range
76 L UPC-A with Addon 5 CCD, Laser, 8700-Long Range
0 NUL None CCD, Laser, 8700-Long Range

59

CipherLab C Programming Part |

CodeType Table 11I:

DEC ASCII Symbology Supported by Scan Engine

47 / Composite_CC_A 8200, 8400, 8700 2D

55 7 Composite_CC_B 8200, 8400, 8700 2D

64 @ ISBT 128 2D, (Extra) Long Range Laser
65 A Code 39 2D, (Extra) Long Range Laser
66 B Code 32 (Italian Pharmacode) 2D, (Extra) Long Range Laser
67 C N/A —

68 D N/A -

69 E Interleaved 25 2D, (Extra) Long Range Laser
70 F Matrix 25 8200, 8400, 8700 -2D

71 G Codabar (NW7) 2D, (Extra) Long Range Laser
72 H Code 93 2D, (Extra) Long Range Laser
73 | Code 128 2D, (Extra) Long Range Laser
74 J UPC-EO 2D, (Extra) Long Range Laser
75 K UPC-E with Addon 2 2D, (Extra) Long Range Laser
76 L UPC-E with Addon 5 2D, (Extra) Long Range Laser
77 M EAN-8 2D, (Extra) Long Range Laser
78 N EAN-8 with Addon 2 2D, (Extra) Long Range Laser
79 (0] EAN-8 with Addon 5 2D, (Extra) Long Range Laser
80 P EAN-13 2D, (Extra) Long Range Laser
81 Q EAN-13 with Addon 2 2D, (Extra) Long Range Laser
82 R EAN-13 with Addon 5 2D, (Extra) Long Range Laser
83 S MSI 2D, (Extra) Long Range Laser
84 T N/A -

85 U GS1-128 (EAN-128) 2D, (Extra) Long Range Laser
86 \% Reserved ---

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

90 z Reserved -—-

91 [GS1 DataBar Omnidirectional (RSS-14) 2D, (Extra) Long Range Laser
92 \ GS1 DataBar Limited (RSS Limited) 2D, (Extra) Long Range Laser
93 1 GS1 DataBar Expanded (RSS Expanded) 2D, (Extra) Long Range Laser
94 n UPC-A 2D, (Extra) Long Range Laser
95 UPC-A Addon 2 2D, (Extra) Long Range Laser

60

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126

- T a =

—

Qo T

-

UPC-A Addon 5
UPC-E1

UPC-E1 Addon 2
UPC-E1 Addon 5

TLC-39 (TCIF Linked Code 39)

Trioptic (Code 39)
Bookland (EAN)
Code 11

Code 39 Full ASCII
IATANC® (25)
Industrial 25 (Discrete 25)
PDF417
MicroPDF417

Data Matrix
Maxicode

QR Code

US Postnet

US Planet

UK Postal

Japan Postal
Australian Postal
Dutch Postal
Composite Code
Composite_CC_C
Macro PDF417
Macro MicroPDF417
Chinese 25

Aztec

MicroQR

Chapter 2 Mobile-Specific Function Library

2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D

2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D, 8300 -Long Range

2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D, (Extra) Long Range Laser
2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

8200, 8400, 8700 2D only
2D

2D

8200, 8400, 8700 -2D

8200, 8400, 8700 -2D

8200, 8400, 8700 -2D

USPS 4CB / One Code / Intelligent Mail 8200, 8400, 8700 -2D

UPU FICS Postal

Coupon Code

8200, 8400, 8700 -2D
2D, (Extra) Long Range Laser

Note: IATA stands for International Air Transport Association, and this barcode type is
used on flight tickets.

61

CipherLab C Programming Part |

2.2.3 SCANNER DESCRIPTION TABLES

The unsigned character arrays, ScannerDesTbl and ScannerDesTbl2 (Scanner
Description Tables), govern the behavior of the Decode() function. Refer to Appendix I
that describes details of ScannerDesTbl and ScannerDesTbl2 variables:

For specific symbology parameters, refer to Appendix Il. For scanner parameters, refer
to Appendix 1.

62

Chapter 2 Mobile-Specific Function Library

2.3 RFID READER

For 8300/8500/8700 Series, it allows an optional RFID reader that can coexist with the
barcode reader, if there is any.

» External Libraries Required for RFID

Series Hardware Configuration External Libraries Required
8300 8300 — Batch + RFID 83RFID.lib
8370 — 802.11b/g + RFID 83WLAN.lib + 83RFID.lib

The RFID reader supports read/write operations, which depend on the tags you are using.
Supported labels include 1SO 15693, Icode®, ISO 14443A, and ISO 14443B. The
performance of many tags has been confirmed, and the results are listed below.

Warning: Before programming, you should study the specifications of RFID tags.

Tag Type UID only Read Page Write Page
TAG_MifarelS0O14443A

Mifare Standard 1K
Mifare Standard 4K
Mifare Ultralight
Mifare DESFire
Mifare S50
SLE44R35

NN N N N RN

SLE66R35
TAG_SR176
SRIX 4K

SR176
TAG_1S015693
ICODE SLI
SRF55V02P
SRF55V02S
SRF55V10P

NN NIRN
1
1
1

TI Tag-it HF-1
TAG__Icode
ICODE v v 4

Note: These are the results found with RFID module version 1.0 (v for features
supported), and you may use RFIDVersion() to find out version information.

63

CipherLab C Programming Part |

2.3.1 VIRTUAL COM

The algorithm for programming the RFID reader simply follows the routines related to
COM ports. The virtual COM port for RFID is defined as COM4. Thus,

» open_com (4, int) : initialize and enable the RFID COM port
(parameter int can be any integer value)

» close_com (4) : terminate and disable the RFID COM port

» read_com (4, char*) : read data of card from RFID COM port

> write_com (4, char®*) : write data of card through RFID COM port

The return values for some related functions are described below.

Function Return Value
read_com (4, char¥*) -1 No Tag
-2 Get Tag fail
-3 Get Tag Page fail
-5 Authentication fail
0 — xx Data Length
com_eot (4) -1 No Tag
-2 Get Tag fail
-3 Get Tag Page fail
-4 Write Tag Page fail
-5 Authentication fail
0 Other errors
1 Success

64

Chapter 2 Mobile-Specific Function Library

2.3.2 RFIDPARAMETER STRUCTURE

Before reading and writing a specific tag, the parameters of RFID must be specified by
calling RFIDReadFormat() and RFIDWriteFormat().

Parameter Description

unsigned char » TagType[O]

TagType[4] Bit7 ~6 Bit5 Bit 4 Bit3 Bit2 Bit 1 Bit O
Reserved 1SO SR176 ISO Icode Tagit 1SO

14443B 14443A 15693
» TagType[1—3]: Reserved

unsigned int | The starting byte of data for the read/write operation.
StartByte

Unsigned int » Read: The maximum data length (1—255).
MaxLen

0 refers to reading UID data only.

> Write: Reserved (Any integer value is acceptable.)

unsigned char Reserved
Reserve[20]
2.3.3 RFID DATA FORMAT

The data format for read_com() is as follows.

Byte O Byte 1 ~ 17 Byte 18 ~ xx
Tag Type V' TAG_1S015693
T TAG_Tagit
‘r TAG_Icode Tag UID (SN) Data
‘M’ TAG_MifarelSO14443A
‘S’ TAG_SR176
‘Z TAG_1S014443B

65

CipherLab C Programming Part |

RFIDReadFormat

8300, 8500, 8700

Purpose
Syntax

Parameters

Example

Return Value

Remarks

To set the reading parameters of RFID.

void RFIDReadFormat (RFIDParameter *source);

RFIDParameter *source

Specify the parameters for the reading operation.

parameter.TagType[0] = Ox3f; // all supported tag types are enabled
parameter.StartByte = 0O;

parameter _MaxLen = 150;

RFIDReadFormat(¶meter);

None

The parameters must be specified before the reading operation.

RFIDWriteFormat

8300, 8500, 8700

Purpose
Syntax

Parameters

Example

Return Value

Remarks

66

To set the writing parameters of RFID.
void RFIDWriteFormat (RFIDParameter *source);

RFIDParameter *source

Specify the parameters for the writing operation.

parameter.TagType[0] = O0x01; // tag type ISO 15693 is enabled
parameter.StartByte = O;

parameter.MaxLen = O; // any integer value
RFIDWriteFormat(¶meter);

None

The parameters must be specified before the writing operation.

Chapter 2 Mobile-Specific Function Library

2.3.4 RFID AUTHENTICATION

GetRFIDSecurityKey

8300, 8500, 8700

Purpose

Syntax

Parameters

Example

Return Value

Remarks

To check the status of security key for some specific tags.

int GetRFIDSecurityKey (unsigned char TagType, unsigned char
*KeyString, unsigned char *KeyType);

unsigned char TagType

‘v’ TAG_1S015693 Refer to the table in section 2.3 for more
information on tag types.

T TAG_Tagit
‘ TAG_Icode

‘M’ TAG_MifarelSO14443A

‘S’ TAG_SR176

*z TAG_1S014443B

unsigned char *KeyString

Pointer to a buffer where key value (string) is stored.

unsigned char *KeyType

Pointer to a buffer where key type is stored.

if (1GetRFIDSecurityKey(TAG _MifarelS014443A, key buffer, &keytype))
{

printf(“No Sefurity Key.”);

}

If any key exists, it returns 1.

Otherwise, it returns O.

This routine is used to find out if there is a security key for some specific tag,
such as Mifare Standard 1K/4K or SLE66R35 tag.

67

CipherLab C Programming Part |

SetRFIDSecurityKey 8300, 8500, 8700
Purpose To set the security key of some specific tags.
Syntax void SetRFIDSecurityKey (unsigned char TagType, unsigned char
*KeyString, unsigned char KeyType);
Parameters unsigned char TagType
‘v’ TAG_1S015693 Refer to the table in section 2.3 for more

T TAG. Tagit information on tag types.

‘ TAG_Icode

‘M’ TAG_MifarelSO14443A

‘S’ TAG_SR176

‘z TAG_1S014443B

unsigned char *KeyString

Pointer to a buffer where key value (string) is stored.

unsigned char KeyType

1 MIFARE_KEYA Key A for Mifare tags
2 MIFARE_KEYB Key B for Mifare tags
Example SetRFIDSecurityKey(

TAG_MifarelS014443A, “FFFFFFFFFFFF”, MIFARE_KEYA);
// set Key A with a specified value for 1S014443A tags
Return Value None

Remarks This routine is used to set security key for some specific tags, such as Mifare
Standard 1K/4K and SLE66R35 tags.

68

Chapter 2 Mobile-Specific Function Library

2.4 KEYBOARD WEDGE

For 8300 Series, it can be programmed to send data to the host through the physical
wedge interface by using the SendData() routine. SendData() is governed by a
3-element unsigned character string — WedgeSetting, which is a system-defined global
character array and must be filled with appropriate values before calling SendData().

For those that do not allow the keyboard wedge cable, alternatives are Bluetooth HID,
USB HID and the Wedge Emulator utility. Refer to the table below, 2.4.3 Wedge Emulator,
and Part 11: Appendix IV Examples (Bluetooth HID and USB HID sections).

Wedge Options Related Functions Supported by

Keyboard Wedge Cable WedgeSetting array 8300 Series
SendData()
WedgeReady()

Wedge Emulator via IR, IrDA, RS-232 @ SendData() 8000/8300/8500 Series
WedgeReady()

open_com()
SetCommType()
close_com()
Wedge Emulator via Bluetooth SPP SendData() 8000/8300/8500 Series
WedgeReady()
open_com()
SetCommType()
close_com()
Bluetooth HID or USB HID WedgeSetting array 8000/8200/8300/8400/8500/8700
SetCommType() Series
open_com()
com_eot()
write_com()
nwrite_com()

close_com()

69

CipherLab C Programming Part |

extern unsigned char

WedgeSetting[3];

The operation of the SendData routine is governed by this unsigned character array.

SendData 8000, 8300, 8500
Purpose To send a string to the host via keyboard wedge interface.
Syntax void SendData (char *out_str);
Parameters char *out_str
Pointer to a buffer where outgoing data is stored.
Example SendData(CodeBuf);
Return Value None
WedgeReady 8000, 8300, 8500
Purpose To check whether the keyboard wedge is ready to send data or not.
Syntax int WedgeReady (void);
Example it (WedgeReady())

Return Value

Remarks

70

SendData(CodeBuf) ;
If connection is OK, it returns 1.
Otherwise, it returns 0.

Before sending data via keyboard wedge, it is recommended to check if the
cable is well connected; otherwise, the transmission may be blocked.

Chapter 2 Mobile-Specific Function Library

2.4.1 DEFINITION OF THE WEDGESETTING ARRAY

Subscript Bit Default Description
0 7-0 0 KBD / Terminal Type
1 7 0 1: Enable capital lock auto-detection
0: Disable capital lock auto-detection
1 6 0 1: Capital lock on
0: Capital lock off
1 5 0 1: Ignore alphabets’ case
0: Alphabets are case-sensitive
1 4 -3 00 00: Normal
10: Digits at lower position
11: Digits at upper position
1 2-1 00 00: Normal
10: Capital lock keyboard
11: Shift lock keyboard
1 0 0 1: Use numeric keypad to transmit digits
0: Use alpha-numeric key to transmit digits
2 7 0 1: Combination Key
0: Extended ASCII Code
(for 8200/8400 only)
2 6—-1 0 Inter-character delay (unit: 5ms)
2 0] 1 HID Character Transmit Mode

0: Batch processing

1: By character

1ST ELEMENT: KBD / TERMINAL TYPE

The possible value of WedgeSetting[O0] is listed below. It determines which type of
keyboard wedge is applied.

Value Terminal Type Value Terminal Type

0 Null (Data Not Transmitted) 21 PS55 002-81, 003-81

1 PCAT (US) 22 PS55 002-2, 003-2

2 PCAT (FR) 23 PS55 002-82, 003-82

3 PCAT (GR) 24 PS55 002-3, 003-3

4 PCAT (IT) 25 PS55 002-8A, 003-8A

5 PCAT (SV) 26 IBM 3477 TYPE 4 (Japanese)

71

CipherLab C Programming Part |

6 PCAT (NO) 27 PS2-30

7 PCAT (UK) 28 Memorex Telex 122 Keys
8 PCAT (BE) 29 PCXT

9 PCAT (SP) 30 IBM 5550

10 PCAT (PO) 31 NEC 5200

11 PS55 A01-1 32 NEC 9800

12 PS55 A01-2 33 DEC VT220, 320, 420
13 PS55 A01-3 34 Macintosh (ADB)

14 PS55 001-1 35 Hitachi Elles

15 PS55 001-81 36 Wyse Enhance KBD (US)
16 PS55 001-2 37 NEC Astra

17 PS55 001-82 38 Unisys TO-300

18 PS55 001-3 39 Televideo 965

19 PS55 001-8A 40 ADDS 1010

20 PS55 002-1, 003-1

For example, if the terminal type is PCAT (US), then the first element of the
WedgeSetting can be defined as follows —

WedgeSetting[0] = 1

2ND E] EMENT

Capital Lock Auto-Detection

Keyboard Type Capital Lock Auto-Detection

PCAT (all available Enabled Disabled
languages), PS2-30, PS55,

or Memorex Telex SendData() can automatically SendData() will transmit

detect the capital lock status of alphabets according to the
keyboard. That is, it will ignore setting of the capital lock status.
the capital lock status setting and

perform auto-detection when

transmitting data.

None of the above SendData() will transmit the alphabets according to the setting of
the capital lock status, even though the auto-detection setting is
enabled.

> To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of the
WedgeSetting array.

Capital Lock Status Setting

72

Chapter 2 Mobile-Specific Function Library

In order to send alphabets with correct case (upper or lower case), the SendData() routine must
know the capital lock status of keyboard when transmitting data.

Incorrect capital lock setting will result in different letter case (for example, ‘A’ becomes ‘a’, and

‘a’ becomes ‘A’).

> To set “Capital Lock ON”, add 64 to the value of the second element of the WedgeSetting
array.

Alphabets’ Case

The setting of this bit affects the way the SendData() routine transmits alphabets. SendData()
can transmit alphabets according to their original case (case-sensitive) or just ignore it. If ignoring
case is selected, SendData() will always transmit alphabets without adding shift key.

> To set “Ignore Alphabets Case”, add 32 to the value of the second element of the
WedgeSetting array.

Digits’ Position

This setting can force the SendData() routine to treat the position of the digit keys on the
keyboard differently. If this setting is set to upper, SendData() will add shift key when
transmitting digits. This setting will be effective only when the keyboard type selected is PCAT (all
available language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits
using numeric keypad, this setting is meaningless.

> To set “Lower Position”, add 16 to the value of the second element of the WedgeSetting
array.

> To set “Upper Position”, add 24 to the value of the second element of the WedgeSetting
array.

Shift / Capital Lock Keyboard

This setting can force the SendData() routine to treat the keyboard type to be a shift lock
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex.

> To set “Capital Lock”, add 4 to the value of the second element of the WedgeSetting array.
> To set “Shift Lock”, add 6 to the value of the second element of the WedgeSetting array.

Digit Transmission

This setting instructs the SendData() routine which group of keys is used to transmit digits,
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric
keypad.

> To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of
the WedgeSetting array.

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are
certain to do so.

3RD ELEMENT: INTER-CHARACTER DELAY
A millisecond inter-character delay time, in the range of 0 to 315 milliseconds, can be

added before transmitting each character. This is used to provide some response time for
PC to process keyboard input.

73

CipherLab C Programming Part |

For example, to set the inter-character delay to 10 milliseconds, the third element of the
WedgeSetting array can be defined as,

WedgeSetting[2] = 2<<1; //2*5ms=10ms, bit 6 ~ 1

2.4.2 COMPOSITION OF OUTPUT STRING

The mapping of the keyboard wedge characters is as listed below. Each character in the
output string is translated by this table when the SendData() routine transmits data.

00 10 20 30 40 50 60 70 80
0 F2 sp 0 @ P - p ®
1 INS F3 ! 1 A Q a q @
2 DLT F4 2 B R r @
3 Home F5 # 3 C S c s ®
4 End F6 $ 4 D T d t @
5 Up F7 % 5 E U e u ®
6 Down F8 & 6 F \% f % ®
7 Left F9 ‘ 7 G W w @
8 BS F10 (8 X x
9 HT F11) 9 I Y i y ®
A LF F12 * J Z] z
B Right ESC + : K [k {
C PgUp Exec , < L \ [|
D CR CR* - = M] m }
E PgDn . > N N n -~
F F1 / ? 0] _ o Dly ENTER*

Note: (1) Dly: Delay 100 millisecond
(2) ©—~®: Digits of nhumeric keypad
(3) CR*/ENTER*: ENTER key on the numeric keypad

74

Chapter 2 Mobile-Specific Function Library

The SendData() routine can not only transmit simple characters as shown above, but
also provide a way to transmit combination key status, or even direct scan codes. This is
done by inserting some special command codes in the output string. A command code is
a character whose value is between 0xCO and OxFF.

0xCO : Indicates that the next character is to be treated as scan code. Transmit it as it is,
no translation required.

OxCO | Ox01 : Send next character with Shift key.
OxCO | Ox02 : Send next character with Left Ctrl key.
OxCO | Ox04 : Send next character with Left Alt key.

OxCO | Ox08 : Send next character with Right Ctrl key.

75

CipherLab C Programming Part |

OxCO | 0x10 : Send next character with Right Alt key.
OxCO | Ox20 : Clear all combination status key after sending the next character.

For example, to send [A] [Ctri-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B]
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string
supplied to the SendData() routine.

0x41, 0xC2, 0x01, 0x35, OxCO, 0x29, 0x09, 0x32, OXC3, 0x41, 0x42, OxC4, 0x31
OxE4, 0x32, OxC4, 0x31, 0xC4, 0x33

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed
character, and Alt-13 is an Enter. 2
The break after Alt-12 is necessary, if omitted the characters will be treated as Alt-1213
instead of Alt-12 and Alt-13.

76

Chapter 2 Mobile-Specific Function Library

2.4.3 WEDGE EMULATOR

We provide a wedge emulator program “Serial to Keyboard Converter” (Serial2KB.exe)
for 8000/8300/8500 Series. It lets users convert data to keyboard input via
IR/IrDA/RS-232/Bluetooth SPP in general wedge functions, such as SendData() and
WedgeReady(). This utility helps develop a keyboard key in an application without any
serial port input function. It supports multiple regions, and therefore, an application can
make use of this tool for varying keyboard layout. Refer to Part 1l: Appendix 1V
Examples.

Note: Alternatively, you may use Bluetooth HID for a wedge application on the
Bluetooth-enabled mobile computers, or USB HID for 8200/8400/8700 Series.

Setial to Keyboard Converkter (We =101 x|

~Communication settings
COM port |E =
Baud rate |1 15200 j
Data hits Iﬂ j
Parity check INunE j
Start Stop | Exit [:%

77

CipherLab C Programming Part |

2.5 BUZZER

This section describes the routines manipulating the buzzer. The activation of the buzzer
is conducted by specifying a beep sequence, which comprises a number of beep
frequency and beep duration pairs. Once on_beeper() or play() is called, the activation
of the buzzer is automatically handled by the background operating system. There is no
need for the application program to wait for the buzzer to stop. Yet, beeper_status()
and off _beeper() are used to determine whether a beep sequence is undergoing or is to
be terminated immediately.

Note: 8200 is equipped with a speaker instead of a buzzer.

2.5.1 BEEP SEQUENCE

A beep sequence is an integer array that is used to instruct how the buzzer is activated.
It comprises a number of pairs of beep frequency and duration. Each pair is one beep.

Beep Sequence = Beep Frequency, Beep Duration, ...
2.5.2 BEEP FREQUENCY

A beep frequency is an integer that is used to specify the frequency (tone) of the buzzer
when it is activated. However, the value of the beep frequency is not the actual
frequency that the buzzer generates. It is calculated by the following formula:

Beep Frequency = 76000 / Actual Frequency Desired

For example, if a frequency of 4 KHz is desired, the value of beep frequency should be 19.

Suitable frequency range is from 1 KHz to 6 KHz, whereas the peak is at 4 KHz. If no
sound is desired (pause), the beep frequency should be set to O.

Note: A beep sequence with frequency set to O causes the buzzer to pause, not to stop.

2.5.3 BEEP DURATION

Beep duration is an integer that is used to specify how long a buzzer will be working at a
specified beep frequency; it is specified in units of 0.01 second. To have the buzzer work
for one second, the beep duration should be set to 100.

Note: When the value of beep duration is set to O, it will end a beep sequence; the
buzzer will stop working.

78

Chapter 2 Mobile-Specific Function Library

beeper_status

Purpose
Syntax
Example

Return Value

To check if a beep sequence is in progress.

int beeper_status (void);

while (beeper_status()); // wait till a beep sequence is completed
If beep sequence is undergoing, it returns 1.

Otherwise, it returns O.

get_beeper_vol 8200, 8400
Purpose To get the volume of beeper.
Syntax int get_beeper_vol (void);
Example val = get_beeper_vol(); // get the volume level
Return Value It returns the volume level.
set_beeper_vol 8200, 8400
Purpose To set the volume of beeper.
Syntax void set_beeper_vol (int level);
Parameters int level
O MUTE_VOL Set the volume level to “Mute” (8200 only)
1 LOW_VOL Set the volume level to “Low”
2 MEDIUM_VOL Set the volume level to “Medium”
3 HIGH_VOL Set the volume level to “High”
Example set_beeper_vol(1); // set the volume level to “Medium”
Return Value None

79

CipherLab C Programming Part |

on_beeper

Purpose

Syntax

Parameters

Example (1)
Example (2)

Example (3)

Return Value

Remarks

To specify a beep sequence of how a buzzer works, or to play a wave table (for
8200 only).

void on_beeper (const int *sequence); // 8000, 8300, 8400, 8500, 8700
unsigned char on_beeper (const void *buffer); // 8200 only
const int *sequence

Pointer to a buffer where a beep sequence is stored.

const void *buffer

Pointer to a buffer where

(1) a beep sequence is stored, or

(2) a wave table is stored, or

(3) the file name of a wave file on SD card is stored. Filename needs to have
a prefix, such as “A:\\”, “a:\\", “A:/”, or “a:/”.

const int two_beeps [] = {19, 10, 0, 10, 19, 10, 0, O};
on_beeper (two_beeps);
on_beeper(“A:\\Sound.wav’);

on_beeper(“A:\\Sound™);

// play a wave file from SD card on 8200
// Filename extension is optional
For 8200 Series, the return value can be one of the following:

Return Value

(0] Success
1 Invalid file format
2 Fail to open file on SD Card

This routine specifies a beep sequence to instruct how a buzzer works. If there
is a beep sequence already in progress, the later will override the original one.

For 8200, the supported audio file format is *.wav files, which meet the
following requirements:

» NumChannels: mono or stereo
» SampleRate: 8000, 11025, 22050, 32000, 44100
> BitsPerSample: 8 bits or 16 bits

off _beeper

Purpose
Syntax
Example

Return Value

80

To terminate a beep sequence immediately if it is in progress.
void off_beeper (void);
off_beeper();

None

Chapter 2 Mobile-Specific Function Library

play

Purpose To play melody by specifying a sequence of how a buzzer works.
Syntax void play (const char *sequence);

Parameters char *sequence

Pointer to a buffer where a melody sequence is stored.
Example const char song [] = {0x31, 10, 0x32, 10, 0x33, 10, 0x34, 10,
0x35, 10, 0x36, 10, O0x37, 10, 0x41, 10,
0x31, 4, 0x32, 4, 0x33, 4, 0x34, 4,
0x35, 4, 0x36, 4, 0x37, 4, 0x41, 4, 0x00, Ox00} ;

play(song);
Return Value None
Remarks This routine is similar to on_beeper(). However, the frequency character is
specified as:
Bit 7 6 5 4 3 2 1 0
Reserved | Frequency for A (La) Scale # key Musical Scale
000: Reserved O: disable | 000: Reserved
001(1): 55 Hz 1: enable 001(1): Do
010(2): 110 Hz 010(2): Re
011(3): 220 Hz 011(3): Mi
100(4): 440 Hz 100(4): Fa
101(5): 880 Hz 101(5): So
110(6): 1760 Hz 110(6): La
111(7): 3520 Hz 111(7): Ti

81

CipherLab C Programming Part |

2.6 LED INDICATOR

In general, the dual-color LED indicator or indicators on the mobile computer are used to
indicate the system status, such as good read or bad read, error occurrence, etc.

set_led
Purpose To set the LED operation mode.
Syntax void set_led (int led, int mode, int duration);
Parameters int led
(0] LED_RED Red LED light in use.
1 LED_GREEN | Green LED light in use.
2 LED_BLUE Blue LED light in use for the 2" LED on

8200/8400/8700, which is used for wireless
communications by default.

3 LED_GREEN2 |Green LED light in use for the 2" LED on
8200/8400/8700, which is used for wireless
communications by default.

int mode

(0] LED_OFF Off for (duration * 0.01) seconds and then on

1 LED_ON On for (duration * 0.01) seconds and then off

2 LED_FLASH Flash, turn on and then off for (duration *0.01)

seconds. Then repeat.
OxfO LED_SYSTEM |Default setting for the 2" LED on 8200/8400/8700.

_CTRL > For LED_BLUE, it is set to indicate Bluetooth
status: flashing quickly for “waiting for connection”
or “connecting”; flashing slowly for “connected”.

> For LED_GREEN?2, it is set to indicate Wi-Fi status:
flashing quickly for “waiting for connection” or
“connecting”; flashing slowly for “connected”.

Oxfl LED_USER_ Used for the 2™ LED on 8200/8400/8700 if user control
CTRL is desired. See example below.

int duration
Specify duration in units of 10 milli-seconds.

» This parameter is ignored when the 2" parameter is LED_SYSTEM_CTRL
or LED_USER_CTRL.

Example set_led(LED_RED, LED_FLASH, 50);
// set red LED to flash for each 1 second cycle
set_led(LED_BLUE, LED_USER_CTRL, 0);
set_led(LED_BLUE, LED_FLASH, 20); // set blue LED on 8400 for user control

Return Value None

82

Chapter 2 Mobile-Specific Function Library

2.7 VIBRATOR & HEATER

This section describes the routines for configuring the vibrator and heater.

» Vibrator: It can be used for status indication.

» Heater: It is used to ensure the LCD functions well even in very cold weather when
the environmental temperature falls below -10 Celsius degrees.

2.7.1 VIBRATOR

The vibrator function is currently supported on 8200/8300/8400/8500/8700 Series.

Note: For 8300 Series, the hardware version must be 4.

GetVibrator

8200, 8300, 8400, 8500, 8700

Purpose
Syntax
Example

Return Value

To get the status of the vibrator.
int GetVibrator (void);

val = GetVibrator();

If enabled (On), it returns 1.

Otherwise, it returns O.

SetVibrator

8200, 8300, 8400, 8500, 8700

Purpose
Syntax

Parameters

Example
Return Value

Remarks

To set the vibrator.

void SetVibrator (int mode);

int mode

(0] Turn off the vibrator

1 Turn on the vibrator

SetVibrator(l); // turn on the vibrator
None

Once the vibrator is enabled by SetVibrator(1), it will automatically start
vibrating until the vibrator is turned off by SetVibrator(0).

83

CipherLab C Programming Part |

2.7.2 HEATER
GetHeaterMode 8500
Purpose To get the status of the heater.
Syntax int GetHeaterMode (void);
Example mode = GetHeaterMode();
Return Value If enabled (On), it returns 1.
Otherwise, it returns O.
Remarks This routine checks the heating functionality.
SetHeaterMode 8500
Purpose To set the heater.
Syntax void SetHeaterMode (int mode);
Parameters int mode
(0] Turn off the heater
1 Turn on the heater
Example SetHeaterMode(1); // turn on the heater
Return Value None

Remarks

84

Once the heating functionality is enabled by SetHeaterMode(1) and the
environmental temperature falls below -10 Celsius degrees, it will automatically
start heating until the heater is turned off by SetHeaterMode(0).

Chapter 2 Mobile-Specific Function Library

2.8 REAL-TIME CLOCK

This section describes the calendar and timer manipulation routines.
2.8.1 CALENDAR

The system date and time are maintained by the calendar chip, and they can be retrieved
from or set to the calendar chip by the get _time() and set_time() functions. A backup
rechargeable Lithium battery keeps the calendar chip running even when the power is
turned off.

» The calendar chip automatically handles the leap year. The year field set to the
calendar chip must be in four-digit format.

Note: The system time variable sys _msec and sys_sec is maintained by CPU timers
and has nothing to do with this calendar chip. Accuracy of these two time variables
depends on the CPU clock and is not suitable for precise time manipulation. They are
reset to O upon powering up.

DayOfWeek

Purpose To get the day of the week information.
Syntax int DayOfWeek (void);

Example day = DayOfWeek();

Return Value The return value can be 1 — 7.

Remarks This routine returns the day of the week information based on the current date.
Return Value
1—-6 Monday to Saturday
7 Sunday
get_time
Purpose To get the current date and time from the calendar chip.
Syntax void get_time (char *cur_time);
Parameters char *cur_time
Pointer to a buffer where the system date and time is stored.
» The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.
» The format of the system date and time is “YYYYMMDDhhmmss”.
Example get_time(system_time);

Return Value

None

85

CipherLab C Programming Part |

set_time
Purpose To set new date and time to the calendar chip.
Syntax int set_time (char *new_time);
Parameters char *new_time
Pointer to a buffer where the new date and time is stored.
» The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.
> The format of the system date and time is “YYYYMMDDhhmmss”.
YYYY year 4 digits
MM month 2 digits, 01—-12
DD day 2 digits, 01— 31
hh hour 2 digits, 00 — 23
mm minute 2 digits, 00 — 59
ss second 2 digits, 00 — 59
Example set_time(*“20050805125800™") ; // AUGUST 5, 2005 12:58:00
Return Value If successful, it returns 1.
Otherwise, it returns 0 to indicate the format is wrong, or the calendar chip is
malfunctioning.
Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and

the system time remains unchanged.

86

2.8.2 ALARM

Chapter 2 Mobile-Specific Function Library

These are applicable to 8000/8200/8400 Series only.

GetAlarm 8000, 8200, 8400
Purpose To get the current alarm time.
Syntax void GetAlarm (char *cur_time);
Parameters char *cur_time
Pointer to a buffer where the alarm time is stored.
» The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.
» The format of the alarm date and time is “YYYYMMDDhhmmss”.
Example GetAlarm(alarm_time);

Return Value

None

SetAlarm 8000, 8200, 8400
Purpose To set the alarm time.
Syntax void SetAlarm (char *new_time);
Parameters char *new_time
Pointer to a buffer where the alarm time is stored.
» The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.
» The format of the alarm date and time is “YYYYMMDDhhmmss”.
YYYY year 4 digits
MM month 2 digits, 01—-12
DD day 2 digits, 01— 31
hh hour 2 digits, 00 — 23
mm minute 2 digits, 00 — 59
ss second 2 digits, 00 — 59
Example SetAlarm(*20050805125800™") ; // AUGUST 5, 2005 12:58:00
Return Value None

Remarks

If the format is invalid (e.g. set hour to 25), the operation is simply denied and
the alarm time remains unchanged.

87

CipherLab C Programming Part |

2.9 BATTERY & CHARGING

This section describes the power management functions that can be used to monitor the
voltage level of the main and backup batteries. The mobile computer is equipped with a
main battery for normal operation as well as a backup battery for keeping SRAM data
and time accuracy.

2.9.1 BATTERY VOLTAGE

get_vmain

Purpose To get the voltage level of the main battery, in units of mV.

Syntax int get_vmain (void);

Example if (get_vmain() < 2200) // alkaline battery

Return Value

puts(“Battery is low.”);

It returns the voltage reading (milli-volt).

get_vbackup

Purpose
Syntax
Example

Return Value

88

To get the voltage level of the backup battery, in units of mV.
int get_vbackup (void);
batl = get_vbackup();

It returns the voltage reading (milli-volt).

2.9.2 CHARGING STATUS

Chapter 2 Mobile-Specific Function Library

charger_status

Purpose
Syntax

Example

Return Value

See Also

To check the charging progress of the main battery.

int charger_status (void);
CHARGE_DONE)
puts(“Battery is full.”)

if (charger_status

For 8000/8300 Series, the return value can be one of the following:

Return Value

(0]
1
2
3

CHARGE_STANDBY
CHARGING
CHARGE_DONE
CHARGE_FAIL

Not connected to any external power.
The battery is being charged.

The battery is fully charged.

Battery charging fails.

For 8200/8400/8700 Series, the return value can be one of the following:

Return Value

(0]
1
2
3

CHARGE_STANDBY
CHARGING_5V
CHARGE_DONE
CHARGE_FAIL

17 CHARGING_USB

Not connected to any external power.

The battery is being charged via 5V power cord.
The battery is fully charged.

Battery charging fails.

The battery is being charged via USB.

For 8500 Series, the return value can be one of the following:

Return Value

(0]
1
2
3

CHARGING
CHARGE_DONE
CHARGE_FAIL
CHARGE_STANDBY

The battery is being charged.
The battery is fully charged.
Battery charging fails.

Not connected to any external power.

GetUSBChargeCurrent, SetUSBChargeCurrent

89

CipherLab C Programming Part |

GetUSBChargeCurrent 8200, 8400, 8700
Purpose To get the charging current via USB port on the mobile computer.

Syntax int GetUSBChargeCurrent (void) ;

Example val = GetUSBChargeCurrent(); // get charging setting

Return Value

For 8200, the return value can be either 0 or 1 or 2.
For 8400, the return value can be either O or 1.

For 8700, the return value can be either 0 or 2.

SetUSBChargeCurrent 8200, 8400, 8700
Purpose To set the charging current via USB port on the mobile computer.
Syntax void SetUSBChargeCurrent (int current_type) ;
Parameters int current_type
(0] CURRENT_500mA Set charging at 500 mA.
1 CURRENT_100mA Set charging at 100 mA (8200/8400 only)
2 CURRENT_OmA Disable charging (8200/8700 only)
Example SetUSBChargeCurrent(CURRENT_500mA); // set 500 mA for USB charging

Return Value

90

None

2.10 KEYPAD

Chapter 2 Mobile-Specific Function Library

The background routine constantly scans the keypad to check if any key is being pressed.
There is a keyboard buffer of size 32 bytes. However, if the buffer is full, the keystrokes
followed will be ignored. Normally, a C program needs constantly to check if any
keystroke is available in the buffer.

2.10.1 GENERAL
CheckKey
Purpose To detect whether the specified keys have been pressed simultaneously or not.
Syntax int CheckKey (const int scan_code,...);
Parameters Specify the scan codes of the keys as many as you like, but be sure to specify
the type as the last parameter. There are two types:
int LastlsType
-1 CHK_EXC Exclusive checking — only the keys being pressed match the
keys specified, will the function return 1.
-2 | CHK_INC Inclusive checking — as long as the keys being pressed
include the keys specified, this function will return 1.
Example while (1)
{

Return Value

Remarks

See Also

if (CheckKey(SC_1, SC_2, SC_3, CHK_EXC))

printf(“The user presses 1, 2, 3 simultaneously.”);
OSTimeDly(8); // delay 8x5 = 40 ms
}
If successful, it ret